FramePack
Lets make video diffusion practical
...The idea is to “pack” frames by detecting shared structure and storing differences efficiently, which can accelerate training or inference on video-like data. By reducing I/O and memory bandwidth, datasets become lighter to load while models still see the essential temporal variation. The repository demonstrates both packing and unpacking steps, making it straightforward to integrate into preprocessing pipelines. It’s useful for diffusion and generative models that learn from sequential image datasets, as well as classical pipelines that batch many related frames. With a simple API and examples, it invites experimentation on tradeoffs between compression, fidelity, and speed.