Showing 29 open source projects for "raylib-5.x"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 1
    GLM-4.5

    GLM-4.5

    GLM-4.5: Open-source LLM for intelligent agents by Z.ai

    GLM-4.5 is a cutting-edge open-source large language model designed by Z.ai for intelligent agent applications. The flagship GLM-4.5 model has 355 billion total parameters with 32 billion active parameters, while the compact GLM-4.5-Air version offers 106 billion total parameters and 12 billion active parameters. Both models unify reasoning, coding, and intelligent agent capabilities, providing two modes: a thinking mode for complex reasoning and tool usage, and a non-thinking mode for...
    Downloads: 127 This Week
    Last Update:
    See Project
  • 2
    Qwen2.5-Math

    Qwen2.5-Math

    A series of math-specific large language models of our Qwen2 series

    Qwen2.5-Math is a series of mathematics-specialized large language models in the Qwen2 family, released by Alibaba’s QwenLM. It includes base models (1.5B / 7B / 72B parameters), instruction-tuned versions, and a reward model (RM) to improve alignment. Unlike its predecessor Qwen2-Math, Qwen2.5-Math supports both Chain-of-Thought (CoT) reasoning and Tool-Integrated Reasoning (TIR) for solving math problems, and works in both Chinese and English. It is optimized for solving mathematical...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Qwen2.5-Omni

    Qwen2.5-Omni

    Capable of understanding text, audio, vision, video

    Qwen2.5-Omni is an end-to-end multimodal flagship model in the Qwen series by Alibaba Cloud, designed to process multiple modalities (text, images, audio, video) and generate responses both as text and natural speech in streaming real-time. It supports “Thinker-Talker” architecture, and introduces innovations for aligning modalities over time (for example synchronizing video/audio), robust speech generation, and low-VRAM/quantized versions to make usage more accessible. It holds...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Qwen-2.5-VL

    Qwen-2.5-VL

    Qwen2.5-VL is the multimodal large language model series

    Qwen2.5 is a series of large language models developed by the Qwen team at Alibaba Cloud, designed to enhance natural language understanding and generation across multiple languages. The models are available in various sizes, including 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B parameters, catering to diverse computational requirements. Trained on a comprehensive dataset of up to 18 trillion tokens, Qwen2.5 models exhibit significant improvements in instruction following, long-text generation...
    Downloads: 11 This Week
    Last Update:
    See Project
  • All-in-one security tool helps you prevent ransomware and breaches. Icon
    All-in-one security tool helps you prevent ransomware and breaches.

    SIEM + Detection and Response for IT Teams

    Blumira’s detection and response platform enables faster resolution of threats to help you stop ransomware attacks and prevent data breaches. We surface real threats, providing meaningful findings so you know what to prioritize. With our 3-step rapid response, you can automatically block known threats, use our playbooks for easy remediation, or contact our security team for additional guidance. Our responsive security team helps with onboarding, triage and ongoing consultations to continuously help your organization improve your security coverage.
    Learn More
  • 5
    HY-World 1.5

    HY-World 1.5

    A Systematic Framework for Interactive World Modeling

    HY-WorldPlay is a Hunyuan AI project focusing on immersive multimodal content generation and interaction within virtual worlds or simulated environments. It aims to empower AI agents with the capability to both understand and generate multimedia content — including text, audio, image, and potentially 3D or game-world elements — enabling lifelike dialogue, environmental interpretations, and responsive world behavior. The platform targets use cases in digital entertainment, game worlds,...
    Downloads: 16 This Week
    Last Update:
    See Project
  • 6
    Qwen2.5

    Qwen2.5

    Open source large language model by Alibaba

    Qwen2.5 is a series of large language models developed by the Qwen team at Alibaba Cloud, designed to enhance natural language understanding and generation across multiple languages. The models are available in various sizes, including 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B parameters, catering to diverse computational requirements. Trained on a comprehensive dataset of up to 18 trillion tokens, Qwen2.5 models exhibit significant improvements in instruction following, long-text generation...
    Downloads: 32 This Week
    Last Update:
    See Project
  • 7
    CodeGeeX

    CodeGeeX

    CodeGeeX: An Open Multilingual Code Generation Model (KDD 2023)

    ...Developed with MindSpore and later made PyTorch-compatible, it is capable of multilingual code generation, cross-lingual code translation, code completion, summarization, and explanation. It has been benchmarked on HumanEval-X, a multilingual program synthesis benchmark introduced alongside the model, and achieves state-of-the-art performance compared to other open models like InCoder and CodeGen. CodeGeeX also powers IDE plugins for VS Code and JetBrains, offering features like code completion, translation, debugging, and annotation. The model supports Ascend 910 and NVIDIA GPUs, with optimizations like quantization and FasterTransformer acceleration for faster inference.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 8
    Wan2.2

    Wan2.2

    Wan2.2: Open and Advanced Large-Scale Video Generative Model

    ...The model is trained on significantly larger datasets than its predecessor, greatly enhancing motion complexity, semantic understanding, and aesthetic diversity. Wan2.2 also open-sources a 5-billion parameter high-compression VAE-based hybrid text-image-to-video (TI2V) model that supports 720P video generation at 24fps on consumer-grade GPUs like the RTX 4090. It supports multiple video generation tasks including text-to-video.
    Downloads: 243 This Week
    Last Update:
    See Project
  • 9
    rwkv.cpp

    rwkv.cpp

    INT4/INT5/INT8 and FP16 inference on CPU for RWKV language model

    Besides the usual FP32, it supports FP16, quantized INT4, INT5 and INT8 inference. This project is focused on CPU, but cuBLAS is also supported. RWKV is a novel large language model architecture, with the largest model in the family having 14B parameters. In contrast to Transformer with O(n^2) attention, RWKV requires only state from the previous step to calculate logits. This makes RWKV very CPU-friendly on large context lengths.
    Downloads: 0 This Week
    Last Update:
    See Project
  • D&B Hoovers is Your Sales Accelerator Icon
    D&B Hoovers is Your Sales Accelerator

    For sales teams that want to accelerate B2B sales with better data

    Speed up sales prospecting with the rich audience targeting capabilities of D&B Hoovers so you can spend more sales time closing.
    Learn More
  • 10
    CodeGeeX2

    CodeGeeX2

    CodeGeeX2: A More Powerful Multilingual Code Generation Model

    CodeGeeX2 is the second-generation multilingual code generation model from ZhipuAI, built upon the ChatGLM2-6B architecture and trained on 600B code tokens. Compared to the first generation, it delivers a significant boost in programming ability across multiple languages, outperforming even larger models like StarCoder-15B in some benchmarks despite having only 6B parameters. The model excels at code generation, translation, summarization, debugging, and comment generation, and it supports...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 11
    Kitten TTS

    Kitten TTS

    State-of-the-art TTS model under 25MB

    KittenTTS is an open-source, ultra-lightweight, and high-quality text-to-speech model featuring just 15 million parameters and a binary size under 25 MB. It is designed for real-time CPU-based deployment across diverse platforms. Ultra-lightweight, model size less than 25MB. CPU-optimized, runs without GPU on any device. High-quality voices, several premium voice options available. Fast inference, optimized for real-time speech synthesis.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 12
    Qwen2.5-Coder

    Qwen2.5-Coder

    Qwen2.5-Coder is the code version of Qwen2.5, the large language model

    Qwen2.5-Coder, developed by QwenLM, is an advanced open-source code generation model designed for developers seeking powerful and diverse coding capabilities. It includes multiple model sizes—ranging from 0.5B to 32B parameters—providing solutions for a wide array of coding needs. The model supports over 92 programming languages and offers exceptional performance in generating code, debugging, and mathematical problem-solving. Qwen2.5-Coder, with its long context length of 128K tokens, is...
    Downloads: 18 This Week
    Last Update:
    See Project
  • 13
    FlashMLA

    FlashMLA

    FlashMLA: Efficient Multi-head Latent Attention Kernels

    ...On very compute-bound settings, it can reach up to ~660 TFLOPS on H800 SXM5 hardware, while in memory-bound configurations it can push memory throughput to ~3000 GB/s. The team regularly updates it with performance improvements; for example, a 2025 update claims 5 % to 15 % gains on compute-bound workloads while maintaining API compatibility.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Step-Audio-EditX

    Step-Audio-EditX

    LLM-based Reinforcement Learning audio edit model

    ...Because the model is trained with a “large-margin learning” objective over many synthesized and natural speech samples, it gains robust control over expressive attributes, and can perform iterative editing: e.g. you could record a line, then ask the model to “make it sadder,” “speak slower,” or “change accent to X.”
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    fairseq2

    fairseq2

    FAIR Sequence Modeling Toolkit 2

    ...It supports multi-GPU and multi-node distributed training using DDP, FSDP, and tensor parallelism, capable of scaling up to 70B+ parameter models. The framework integrates seamlessly with PyTorch 2.x features such as torch.compile, Fully Sharded Data Parallel (FSDP), and modern configuration management.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Step1X-3D

    Step1X-3D

    High-Fidelity and Controllable Generation of Textured 3D Assets

    ...The result is fully 3D assets — meshes + textures — which can be rendered from any viewpoint, textured consistently, and used in 3D applications. To achieve this, the project includes a massive curated dataset: among more than 5 million candidate 3D assets, it filters and standardizes to produce a high-quality 2 million–asset subset suitable for training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Vidi2

    Vidi2

    Large Multimodal Models for Video Understanding and Editing

    Vidi is a family of large multimodal models developed for deep video understanding and editing tasks, integrating vision, audio, and language to allow sophisticated querying and manipulation of video content. It’s designed to process long-form, real-world videos and answer complex queries such as “when in this clip does X happen?” or “where in the frame is object Y during that moment?” — offering temporal retrieval, spatio-temporal grounding (i.e. locating objects over time + space), and even video question answering. Vidi targets applications like intelligent video editing, automated video search, content analysis, and editing assistance, enabling users to efficiently locate relevant segments and objects in hours-long footage. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Grok-2.5

    Grok-2.5

    Large-scale xAI model for local inference with SGLang, Grok-2.5

    Grok-2.5 is a large-scale AI model developed and released by xAI in 2024, made available through Hugging Face for research and experimentation. The model is distributed as raw weights that require specialized infrastructure to run, rather than being hosted by inference providers. To use it, users must download over 500 GB of files and set them up locally with the SGLang inference engine. Grok-2.5 supports advanced inference with multi-GPU configurations, requiring at least 8 GPUs with more...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    GLM-4.5-Air

    GLM-4.5-Air

    Compact hybrid reasoning language model for intelligent responses

    GLM-4.5-Air is a multilingual large language model with 106 billion total parameters and 12 billion active parameters, designed for conversational AI and intelligent agents. It is part of the GLM-4.5 family developed by Zhipu AI, offering hybrid reasoning capabilities via two modes: a thinking mode for complex reasoning and tool use, and a non-thinking mode for immediate responses. The model is optimized for efficiency and deployment, delivering strong results across 12 industry benchmarks,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Qwen2.5-14B-Instruct

    Qwen2.5-14B-Instruct

    Powerful 14B LLM with strong instruction and long-text handling

    Qwen2.5-14B-Instruct is a powerful instruction-tuned language model developed by the Qwen team, based on the Qwen2.5 architecture. It features 14.7 billion parameters and is optimized for tasks like dialogue, long-form generation, and structured output. The model supports context lengths up to 128K tokens and can generate up to 8K tokens, making it suitable for long-context applications. It demonstrates improved performance in coding, mathematics, and multilingual understanding across over...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    bge-large-en-v1.5

    bge-large-en-v1.5

    BGE-Large v1.5: High-accuracy English embedding model for retrieval

    BAAI/bge-large-en-v1.5 is a powerful English sentence embedding model designed by the Beijing Academy of Artificial Intelligence to enhance retrieval-augmented language model systems. It uses a BERT-based architecture fine-tuned to produce high-quality dense vector representations optimized for sentence similarity, search, and retrieval. This model is part of the BGE (BAAI General Embedding) family and delivers improved similarity distribution and state-of-the-art results on the MTEB...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Qwen2.5-VL-3B-Instruct

    Qwen2.5-VL-3B-Instruct

    Qwen2.5-VL-3B-Instruct: Multimodal model for chat, vision & video

    Qwen2.5-VL-3B-Instruct is a 3.75 billion parameter multimodal model by Qwen, designed to handle complex vision-language tasks in both image and video formats. As part of the Qwen2.5 series, it supports image-text-to-text generation with capabilities like chart reading, object localization, and structured data extraction. The model can serve as an intelligent visual agent capable of interacting with digital interfaces and understanding long-form videos by dynamically sampling resolution and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    bge-small-en-v1.5

    bge-small-en-v1.5

    Compact English sentence embedding model for semantic search tasks

    BAAI/bge-small-en-v1.5 is a lightweight English sentence embedding model developed by the Beijing Academy of Artificial Intelligence (BAAI) as part of the BGE (BAAI General Embedding) series. Designed for dense retrieval, semantic search, and similarity tasks, it produces 384-dimensional embeddings that can be used to compare and rank sentences or passages. This version (v1.5) improves similarity distribution, enhancing performance without the need for special query instructions. The model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Qwen2.5-VL-7B-Instruct

    Qwen2.5-VL-7B-Instruct

    Multimodal 7B model for image, video, and text understanding tasks

    Qwen2.5-VL-7B-Instruct is a multimodal vision-language model developed by the Qwen team, designed to handle text, images, and long videos with high precision. Fine-tuned from Qwen2.5-VL, this 7-billion-parameter model can interpret visual content such as charts, documents, and user interfaces, as well as recognize common objects. It supports complex tasks like visual question answering, localization with bounding boxes, and structured output generation from documents. The model is also...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    bge-base-en-v1.5

    bge-base-en-v1.5

    Efficient English embedding model for semantic search and retrieval

    bge-base-en-v1.5 is an English sentence embedding model from BAAI optimized for dense retrieval tasks, part of the BGE (BAAI General Embedding) family. It is a fine-tuned BERT-based model designed to produce high-quality, semantically meaningful embeddings for tasks like semantic similarity, information retrieval, classification, and clustering. This version (v1.5) improves retrieval performance and stabilizes similarity score distribution without requiring instruction-based prompts. With...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next