FlashMLA
FlashMLA: Efficient Multi-head Latent Attention Kernels
FlashMLA is a high-performance decoding kernel library designed especially for Multi-Head Latent Attention (MLA) workloads, targeting NVIDIA Hopper GPU architectures. It provides optimized kernels for MLA decoding, including support for variable-length sequences, helping reduce latency and increase throughput in model inference systems using that attention style. The library supports both BF16 and FP16 data types, and includes a paged KV cache implementation with a block size of 64 to...