Showing 35 open source projects for "iperf-3"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 1
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    SAM 3 (Segment Anything Model 3) is a unified foundation model for promptable segmentation in both images and videos, capable of detecting, segmenting, and tracking objects. It accepts both text prompts (open-vocabulary concepts like “red car” or “goalkeeper in white”) and visual prompts (points, boxes, masks) and returns high-quality masks, boxes, and scores for the requested concepts.
    Downloads: 101 This Week
    Last Update:
    See Project
  • 2
    AlphaFold 3

    AlphaFold 3

    AlphaFold 3 inference pipeline

    AlphaFold 3, developed by Google DeepMind, is an advanced deep learning system for predicting biomolecular structures and interactions with exceptional accuracy. This repository provides the complete inference pipeline for running AlphaFold 3, though access to the model parameters is restricted and must be obtained directly from Google under specific terms of use.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    HunyuanImage-3.0

    HunyuanImage-3.0

    A Powerful Native Multimodal Model for Image Generation

    HunyuanImage-3.0 is a powerful, native multimodal text-to-image generation model released by Tencent’s Hunyuan team. It unifies multimodal understanding and generation in a single autoregressive framework, combining text and image modalities seamlessly rather than relying on separate image-only diffusion components. It uses a Mixture-of-Experts (MoE) architecture with many expert subnetworks to scale efficiently, deploying only a subset of experts per token, which allows large parameter...
    Downloads: 15 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    rwkv.cpp

    rwkv.cpp

    INT4/INT5/INT8 and FP16 inference on CPU for RWKV language model

    Besides the usual FP32, it supports FP16, quantized INT4, INT5 and INT8 inference. This project is focused on CPU, but cuBLAS is also supported. RWKV is a novel large language model architecture, with the largest model in the family having 14B parameters. In contrast to Transformer with O(n^2) attention, RWKV requires only state from the previous step to calculate logits. This makes RWKV very CPU-friendly on large context lengths.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    HY-Motion 1.0

    HY-Motion 1.0

    HY-Motion model for 3D character animation generation

    HY-Motion 1.0 is an open-source, large-scale AI model suite developed by Tencent’s Hunyuan team that generates high-quality 3D human motion from simple text prompts, enabling the automatic production of fluid, diverse, and semantically accurate animations without manual keyframing or rigging. Built on advanced deep learning architectures that combine Diffusion Transformer (DiT) and flow matching techniques, HY-Motion scales these approaches to the billion-parameter level, resulting in strong...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    MedGemma

    MedGemma

    Collection of Gemma 3 variants that are trained for performance

    MedGemma is a collection of specialized open-source AI models created by Google as part of its Health AI Developer Foundations initiative, built on the Gemma 3 family of transformer models and trained for medical text and image comprehension tasks that help accelerate the development of healthcare-focused AI applications. It includes multiple variants such as a 4 billion-parameter multimodal model that can process both medical images and text and a 27 billion-parameter text-only (and multimodal) model that offers deeper clinical reasoning and understanding at higher capacity, making it suitable for complex tasks like medical question answering, summarization of clinical notes, or generating reports from radiology images. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    UCO3D

    UCO3D

    Uncommon Objects in 3D dataset

    uCO3D is a large-scale 3D vision dataset and toolkit centered on turn-table videos of everyday objects drawn from the LVIS taxonomy. It provides about 170,000 full videos per object instance rather than still frames, along with per-video annotations including object masks, calibrated camera poses, and multiple flavors of point clouds. Each sequence also ships with a precomputed 3D Gaussian Splat reconstruction, enabling fast, differentiable rendering workflows and modern implicit/point-based...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    CogVLM2

    CogVLM2

    GPT4V-level open-source multi-modal model based on Llama3-8B

    CogVLM2 is the second generation of the CogVLM vision-language model series, developed by ZhipuAI and released in 2024. Built on Meta-Llama-3-8B-Instruct, CogVLM2 significantly improves over its predecessor by providing stronger performance across multimodal benchmarks such as TextVQA, DocVQA, and ChartQA, while introducing extended context length support of up to 8K tokens and high-resolution image input up to 1344×1344. The series includes models for both image understanding and video understanding, with CogVLM2-Video supporting up to 1-minute videos by analyzing keyframes. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 10
    Step-Audio-EditX

    Step-Audio-EditX

    LLM-based Reinforcement Learning audio edit model

    Step-Audio-EditX is an open-source, 3 billion-parameter audio model from StepFun AI designed to make expressive and precise editing of speech and audio as easy as text editing. Rather than treating audio editing as low-level waveform manipulation, this model converts speech into a sequence of discrete “audio tokens” (via a dual-codebook tokenizer) — combining a linguistic token stream and a semantic (prosody/emotion/style) token stream — thereby abstracting audio editing into high-level token operations. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Anthropic SDK Python

    Anthropic SDK Python

    Provides convenient access to the Anthropic REST API from any Python 3

    The anthropic-sdk-python repository is the official Python client library for interacting with the Anthropic (Claude) REST API. It is designed to provide a user-friendly, type-safe, and asynchronous/synchronous capable interface for making chat/completion requests to models like Claude. The library includes definitions for all request and response parameters using Python typed objects, automatically handles serialization and deserialization, and wraps HTTP logic (timeouts, retries, error...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Proximus for Ryzen AI

    Proximus for Ryzen AI

    Runtime extension of Proximus enabling Deployment on AMD Ryzen™ AI

    This project extends the Proximus development environment to support deployment of AI workloads on next-generation AMD Ryzen™ AI processors, such as the Ryzen™ AI 7 PRO 7840U featured in the Lenovo ThinkPad T14s Gen 4 ,one of the first true AI PCs with an onboard Neural Processing Unit (NPU) capable of 16 TOPS (trillion operations per second). Originally designed for use with Windows 11 Pro, this runtime was further enhanced to work under Linux environments, allowing developers and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    GLM-130B

    GLM-130B

    GLM-130B: An Open Bilingual Pre-Trained Model (ICLR 2023)

    ...It is designed for large-scale inference and supports both left-to-right generation and blank filling, making it versatile across NLP tasks. Trained on over 400 billion tokens (200B English, 200B Chinese), it achieves performance surpassing GPT-3 175B, OPT-175B, and BLOOM-176B on multiple benchmarks, while also showing significant improvements on Chinese datasets compared to other large models. The model supports efficient inference via INT8 and INT4 quantization, reducing hardware requirements from 8× A100 GPUs to as little as a single server with 4× RTX 3090s. Built on the SwissArmyTransformer (SAT) framework and compatible with DeepSpeed and FasterTransformer, it supports high-speed inference (up to 2.5× faster) and reproducible evaluation across 30+ benchmark tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    ...During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. VALL-E emerges in-context learning capabilities and can be used to synthesize high-quality personalized speech with only a 3-second enrolled recording of an unseen speaker as an acoustic prompt. Experiment results show that VALL-E significantly outperforms the state-of-the-art zero-shot TTS system in terms of speech naturalness and speaker similarity. In addition, we find VALL-E could preserve the speaker's emotion and acoustic environment of the acoustic prompt in synthesis.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 15
    ToMe (Token Merging)

    ToMe (Token Merging)

    A method to increase the speed and lower the memory footprint

    ToMe (Token Merging) is a PyTorch-based optimization framework designed to significantly accelerate Vision Transformer (ViT) architectures without retraining. Developed by researchers at Facebook (Meta AI), ToMe introduces an efficient technique that merges similar tokens within transformer layers, reducing redundant computation while preserving model accuracy. This approach differs from token pruning, which removes background tokens entirely; instead, ToMe merges tokens based on feature...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    ...This, as well as the fact that many GPUs became available to us, among other things, prompted us to move development over to GPT-NeoX. All evaluations were done using our evaluation harness. Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 17
    Nemotron 3

    Nemotron 3

    Large language model developed and released by NVIDIA

    NVIDIA-Nemotron-3-Nano-30B-A3B-FP8 is a state-of-the-art large language model developed and released by NVIDIA as part of its Nemotron 3 family, optimized for high-efficiency inference and strong reasoning performance in open AI workloads. It is the post-trained and FP8-quantized variant of the Nemotron 3 Nano model, meaning its weights and activations are represented in 8-bit floating point (FP8) to dramatically reduce memory usage and computational cost while retaining high accuracy. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    GigaChat 3 Ultra

    GigaChat 3 Ultra

    High-performance MoE model with MLA, MTP, and multilingual reasoning

    GigaChat 3 Ultra is a flagship instruct-model built on a custom Mixture-of-Experts architecture with 702B total and 36B active parameters. It leverages Multi-head Latent Attention to compress the KV cache into latent vectors, dramatically reducing memory demand and improving inference speed at scale. The model also employs Multi-Token Prediction, enabling multi-step token generation in a single pass for up to 40% faster output through speculative and parallel decoding techniques. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Ministral 3 3B Base 2512

    Ministral 3 3B Base 2512

    Small 3B-base multimodal model ideal for custom AI on edge hardware

    Ministral 3 3B Base 2512 is the smallest model in the Ministral 3 family, offering a compact yet capable multimodal architecture suited for lightweight AI applications. It combines a 3.4B-parameter language model with a 0.4B vision encoder, enabling both text and image understanding in a tiny footprint. As the base pretrained model, it is not fine-tuned for instructions or reasoning, making it the ideal foundation for custom post-training, domain adaptation, or specialized downstream tasks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Ministral 3 8B Base 2512

    Ministral 3 8B Base 2512

    Versatile 8B-base multimodal LLM, flexible foundation for custom AI

    Ministral 3 8B Base 2512 is a mid-sized, dense model in the Ministral 3 series, designed as a general-purpose foundation for text and image tasks. It pairs an 8.4B-parameter language model with a 0.4B-parameter vision encoder, enabling unified multimodal capabilities out of the box. As a “base” model (i.e., not fine-tuned for instruction or reasoning), it offers a flexible starting point for custom downstream tasks or fine-tuning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Ministral 3 14B Base 2512

    Ministral 3 14B Base 2512

    Powerful 14B-base multimodal model — flexible base for fine-tuning

    Ministral 3 14B Base 2512 is the largest model in the Ministral 3 line, offering state-of-the-art language and vision capabilities in a dense, base-pretrained form. It combines a 13.5B-parameter language model with a 0.4B-parameter vision encoder, enabling both high-quality text understanding/generation and image-aware tasks. As a “base” model (i.e. not fine-tuned for instruction or reasoning), it provides a flexible foundation ideal for custom fine-tuning or downstream specialization. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Ministral 3 3B Reasoning 2512

    Ministral 3 3B Reasoning 2512

    Compact 3B-param multimodal model for efficient on-device reasoning

    Ministral 3 3B Reasoning 2512 is the smallest reasoning-capable model in the Ministal-3 family, yet delivers a surprisingly capable multimodal and multilingual base for lightweight AI applications. It pairs a 3.4B-parameter language model with a 0.4B-parameter vision encoder, enabling it to understand both text and image inputs. This reasoning-tuned variant is optimized for tasks like math, coding, and other STEM-related problem solving, making it suitable for applications that require logical reasoning, analysis, or structured thinking. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Ministral 3 8B Reasoning 2512

    Ministral 3 8B Reasoning 2512

    Efficient 8B multimodal model tuned for advanced reasoning tasks.

    Ministral 3 8B Reasoning 2512 is a balanced midsize model in the Ministral 3 family, delivering strong multimodal reasoning capabilities within an efficient footprint. It combines an 8.4B-parameter language model with a 0.4B vision encoder, enabling it to process both text and images for advanced reasoning tasks. This version is specifically post-trained for reasoning, making it well-suited for math, coding, and STEM applications requiring multi-step logic and problem-solving. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Ministral 3 14B Reasoning 2512

    Ministral 3 14B Reasoning 2512

    High-precision 14B multimodal model built for advanced reasoning tasks

    Ministral 3 14B Reasoning 2512 is the largest model in the Ministral 3 series, delivering frontier-level performance with capabilities comparable to the Mistral Small 3.2 24B model. It pairs a 13.5B-parameter language model with a 0.4B vision encoder, enabling strong multimodal reasoning across both text and images. This version is specifically post-trained for reasoning tasks, making it highly effective for math, coding, STEM workloads, and complex multi-step problem-solving. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Ministral 3 3B Instruct 2512

    Ministral 3 3B Instruct 2512

    Ultra-efficient 3B multimodal instruct model built for edge deployment

    Ministral 3 3B Instruct 2512 is the smallest model in the Ministral 3 family, offering a lightweight yet capable multimodal architecture designed for edge and low-resource deployments. It includes a 3.4B-parameter language model paired with a 0.4B vision encoder, enabling it to understand both text and visual inputs. As an FP8 instruct-fine-tuned model, it is optimized for chat, instruction following, and compact agentic tasks while maintaining strong adherence to system prompts. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next