Showing 12 open source projects for "garnet-file"

View related business solutions
  • Vibes don’t ship, Retool does Icon
    Vibes don’t ship, Retool does

    Start from a prompt and build production-ready apps on your data—with security, permissions, and compliance built in.

    Vibe coding tools create cool demos, but Retool helps you build software your company can actually use. Generate internal apps that connect directly to your data—deployed in your cloud with enterprise security from day one. Build dashboards, admin panels, and workflows with granular permissions already in place. Stop prototyping and ship on a platform that actually passes security review.
    Build apps that ship
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    CodeGeeX2

    CodeGeeX2

    CodeGeeX2: A More Powerful Multilingual Code Generation Model

    ...Its backend powers the CodeGeeX IDE plugins for VS Code, JetBrains, and other editors, offering developers interactive AI assistance with features like infilling and cross-file completion.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 2
    Claude Code Action

    Claude Code Action

    Claude Code action for GitHub PRs

    Claude Code Action is a general-purpose GitHub Action that brings Anthropic’s Claude Code into pull requests and issues to answer questions, review changes, and even implement code edits. It can wake up automatically when someone mentions @claude, when a PR or issue meets certain conditions, or when a workflow step provides an explicit prompt. The action is designed to understand diffs and surrounding context, so its comments and suggestions are grounded in what actually changed rather than...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 3
    MiniMax-M2

    MiniMax-M2

    MiniMax-M2, a model built for Max coding & agentic workflows

    ...It uses a Mixture-of-Experts (MoE) architecture with 230 billion total parameters but only 10 billion activated per token, giving it the behavior of a very large model at a fraction of the runtime cost. The model is tuned for end-to-end developer flows such as multi-file edits, compile–run–fix loops, and test-validated repairs across real repositories and diverse programming languages. It is also optimized for multi-step agent tasks, planning and executing long toolchains that span shell commands, browsers, retrieval systems, and code runners. Benchmarks show that it achieves highly competitive scores on a wide range of intelligence and agent benchmarks, including SWE-Bench variants, Terminal-Bench, BrowseComp, GAIA, and several long-context reasoning suites.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    rwkv.cpp

    rwkv.cpp

    INT4/INT5/INT8 and FP16 inference on CPU for RWKV language model

    Besides the usual FP32, it supports FP16, quantized INT4, INT5 and INT8 inference. This project is focused on CPU, but cuBLAS is also supported. RWKV is a novel large language model architecture, with the largest model in the family having 14B parameters. In contrast to Transformer with O(n^2) attention, RWKV requires only state from the previous step to calculate logits. This makes RWKV very CPU-friendly on large context lengths.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    IQuest-Coder-V1 Model Family

    IQuest-Coder-V1 Model Family

    New family of code large language models (LLMs)

    ...These models range from tens of billions to smaller footprints and are trained on a novel code-flow multi-stage paradigm that captures how real software evolves over time — not just static code snapshots — giving them a deeper semantic understanding of programming logic. They support native long contexts up to 128K tokens, enabling them to reason across large codebases and multi-file interactions without context fragmentation, and include “Thinking” variants optimized for complex reasoning and “Loop” variants with recurrent mechanisms to improve inference efficiency. IQuest-Coder-V1 delivers state-of-the-art performance on multiple coding benchmarks, demonstrating strong results in competitive programming, tool use, and agentic code generation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    GPT Discord Bot

    GPT Discord Bot

    Example Discord bot written in Python that uses the completions API

    ...The bot supports a /chat command that spawns a public thread, carries full conversation context across messages, and gracefully closes the thread when context or message limits are reached. Developers can customize system instructions through a config file and modify the model used for responses. While minimal, this project offers a clear example of how to set up authentication, permissions, and message handling for deploying a functional GPT-powered chatbot in Discord.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 7
    Grok-1

    Grok-1

    Open-source, high-performance Mixture-of-Experts large language model

    ...Due to its substantial size, utilizing Grok-1 requires a machine with significant GPU memory. The repository's MoE layer implementation prioritizes correctness over efficiency, avoiding the need for custom kernels. This is a full repo snapshot ZIP file of the Grok-1 code.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 8
    Demucs

    Demucs

    Code for the paper Hybrid Spectrogram and Waveform Source Separation

    Demucs (Deep Extractor for Music Sources) is a deep-learning framework for music source separation—extracting individual instrument or vocal tracks from a mixed audio file. The system is based on a U-Net-like convolutional architecture combined with recurrent and transformer elements to capture both short-term and long-term temporal structure. It processes raw waveforms directly rather than spectrograms, allowing for higher-quality reconstruction and fewer artifacts in separated tracks. The repository includes pretrained models for common tasks such as isolating vocals, drums, bass, and accompaniment from stereo music, achieving state-of-the-art results in benchmarks like MUSDB18. ...
    Downloads: 58 This Week
    Last Update:
    See Project
  • 9
    Alpaca.cpp

    Alpaca.cpp

    Locally run an Instruction-Tuned Chat-Style LLM

    ...This combines the LLaMA foundation model with an open reproduction of Stanford Alpaca a fine-tuning of the base model to obey instructions (akin to the RLHF used to train ChatGPT) and a set of modifications to llama.cpp to add a chat interface. Download the zip file corresponding to your operating system from the latest release. The weights are based on the published fine-tunes from alpaca-lora, converted back into a PyTorch checkpoint with a modified script and then quantized with llama.cpp the regular way.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Dun and Bradstreet Connect simplifies the complex burden of data management Icon
    Dun and Bradstreet Connect simplifies the complex burden of data management

    Our self-service data management platform enables your organization to gain a complete and accurate view of your accounts and contacts.

    The amount, speed, and types of data created in today’s world can be overwhelming. With D&B Connect, you can instantly benchmark, enrich, and monitor your data against the Dun & Bradstreet Data Cloud to help ensure your systems of record have trusted data to fuel growth.
    Learn More
  • 10
    Devstral 2

    Devstral 2

    Agentic 123B coding model optimized for large-scale engineering

    Devstral 2 is a large-scale agentic language model purpose-built for software engineering tasks, excelling at codebase exploration, multi-file editing, and tool-driven automation. With 123B parameters and FP8 instruct tuning, it delivers strong instruction following for chat-based workflows, coding assistants, and autonomous developer agents. The model demonstrates outstanding performance on SWE-bench, validating its effectiveness in real-world engineering scenarios. It generalizes well across diverse prompts, languages, and development environments, making it adaptable to a wide range of coding workflows. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Devstral Small 2

    Devstral Small 2

    Lightweight 24B agentic coding model with vision and long context

    Devstral Small 2 is a compact agentic language model designed for software engineering workflows, excelling at tool usage, codebase exploration, and multi-file editing. With 24B parameters and FP8 instruct tuning, it delivers strong instruction following while remaining lightweight enough for local and on-device deployment. The model achieves competitive performance on SWE-bench, validating its effectiveness for real-world coding and automation tasks. It introduces vision capabilities, enabling image understanding alongside text for more versatile development workflows. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Qwen2.5-VL-3B-Instruct

    Qwen2.5-VL-3B-Instruct

    Qwen2.5-VL-3B-Instruct: Multimodal model for chat, vision & video

    ...It uses a SwiGLU and RMSNorm-enhanced ViT architecture and introduces mRoPE updates for robust temporal and spatial understanding. The model supports flexible image input (file path, URL, base64) and outputs structured responses like bounding boxes or JSON, making it highly versatile in commercial and research settings. It excels in a wide range of benchmarks such as DocVQA, InfoVQA, and AndroidWorld control tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next