Showing 27 open source projects for "dev-c"

View related business solutions
  • Smart Business Texting that Generates Pipeline Icon
    Smart Business Texting that Generates Pipeline

    Create and convert pipeline at scale through industry leading SMS campaigns, automation, and conversation management.

    TextUs is the leading text messaging service provider for businesses that want to engage in real-time conversations with customers, leads, employees and candidates. Text messaging is one of the most engaging ways to communicate with customers, candidates, employees and leads. 1:1, two-way messaging encourages response and engagement. Text messages help teams get 10x the response rate over phone and email. Business text messaging has become a more viable form of communication than traditional mediums. The TextUs user experience is intentionally designed to resemble the familiar SMS inbox, allowing users to easily manage contacts, conversations, and campaigns. Work right from your desktop with the TextUs web app or use the Chrome extension alongside your ATS or CRM. Leverage the mobile app for on-the-go sending and responding.
    Learn More
  • Inventors: Validate Your Idea, Protect It and Gain Market Advantages Icon
    Inventors: Validate Your Idea, Protect It and Gain Market Advantages

    SenseIP is ideal for individual inventors, startups, and businesses

    senseIP is an AI innovation platform for inventors, automating any aspect of IP from the moment you have an idea. You can have it researched for uniqueness and protected; quickly and effortlessly, without expensive attorneys. Built for business success while securing your competitive edge.
    Learn More
  • 1
    llama.cpp

    llama.cpp

    Port of Facebook's LLaMA model in C/C++

    The llama.cpp project enables the inference of Meta's LLaMA model (and other models) in pure C/C++ without requiring a Python runtime. It is designed for efficient and fast model execution, offering easy integration for applications needing LLM-based capabilities. The repository focuses on providing a highly optimized and portable implementation for running large language models directly within C/C++ environments.
    Downloads: 109 This Week
    Last Update:
    See Project
  • 2
    FLUX.2

    FLUX.2

    Official inference repo for FLUX.2 models

    FLUX.2 is a state-of-the-art open-weight image generation and editing model released by Black Forest Labs aimed at bridging the gap between research-grade capabilities and production-ready workflows. The model offers both text-to-image generation and powerful image editing, including editing of multiple reference images, with fidelity, consistency, and realism that push the limits of what open-source generative models have achieved. It supports high-resolution output (up to ~4 megapixels),...
    Downloads: 35 This Week
    Last Update:
    See Project
  • 3
    MiniMax-M2.1

    MiniMax-M2.1

    MiniMax M2.1, a SOTA model for real-world dev & agents.

    MiniMax-M2.1 is an open-source, state-of-the-art agentic language model released to democratize high-performance AI capabilities. It goes beyond a simple parameter upgrade, delivering major gains in coding, tool use, instruction following, and long-horizon planning. The model is designed to be transparent, controllable, and accessible, enabling developers to build autonomous systems without relying on closed platforms. MiniMax-M2.1 excels in real-world software engineering tasks, including...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    ChatGLM.cpp

    ChatGLM.cpp

    C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4(V)

    ChatGLM.cpp is a C++ implementation of the ChatGLM-6B model, enabling efficient local inference without requiring a Python environment. It is optimized for running on consumer hardware.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Deliver trusted data with dbt Icon
    Deliver trusted data with dbt

    dbt Labs empowers data teams to build reliable, governed data pipelines—accelerating analytics and AI initiatives with speed and confidence.

    Data teams use dbt to codify business logic and make it accessible to the entire organization—for use in reporting, ML modeling, and operational workflows.
    Learn More
  • 5
    CodeGeeX

    CodeGeeX

    CodeGeeX: An Open Multilingual Code Generation Model (KDD 2023)

    CodeGeeX is a large-scale multilingual code generation model with 13 billion parameters, trained on 850B tokens across more than 20 programming languages. Developed with MindSpore and later made PyTorch-compatible, it is capable of multilingual code generation, cross-lingual code translation, code completion, summarization, and explanation. It has been benchmarked on HumanEval-X, a multilingual program synthesis benchmark introduced alongside the model, and achieves state-of-the-art...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 6
    AlphaFold 3

    AlphaFold 3

    AlphaFold 3 inference pipeline

    AlphaFold 3, developed by Google DeepMind, is an advanced deep learning system for predicting biomolecular structures and interactions with exceptional accuracy. This repository provides the complete inference pipeline for running AlphaFold 3, though access to the model parameters is restricted and must be obtained directly from Google under specific terms of use. The system is designed for scientific research applications in structural biology, biochemistry, and bioinformatics, enabling...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    LLamaSharp

    LLamaSharp

    C#/.NET binding of llama.cpp, including LLaMa/GPT model inference

    The C#/.NET binding of llama.cpp. It provides APIs to infer the LLaMa Models and deploy it on the local environment. It works on both Windows, Linux and MAC without the requirement for compiling llama.cpp yourself. Its performance is close to llama.cpp. Furthermore, it provides integrations with other projects such as BotSharp to provide higher-level applications and UI.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    fairseq2

    fairseq2

    FAIR Sequence Modeling Toolkit 2

    fairseq2 is a modern, modular sequence modeling framework developed by Meta AI Research as a complete redesign of the original fairseq library. Built from the ground up for scalability, composability, and research flexibility, fairseq2 supports a broad range of language, speech, and multimodal content generation tasks, including instruction fine-tuning, reinforcement learning from human feedback (RLHF), and large-scale multilingual modeling. Unlike the original fairseq—which evolved into a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    VMZ (Video Model Zoo)

    VMZ (Video Model Zoo)

    VMZ: Model Zoo for Video Modeling

    The codebase was designed to help researchers and practitioners quickly reproduce FAIR’s results and leverage robust pre-trained backbones for downstream tasks. It also integrates Gradient Blending, an audio-visual modeling method that fuses modalities effectively (available in the Caffe2 implementation). Although VMZ is now archived and no longer actively maintained, it remains a valuable reference for understanding early large-scale video model training, transfer learning, and multimodal...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Zendesk: The Complete Customer Service Solution Icon
    Zendesk: The Complete Customer Service Solution

    Discover AI-powered, award-winning customer service software trusted by 200k customers

    Equip your agents with powerful AI tools and workflows that boost efficiency and elevate customer experiences across every channel.
    Learn More
  • 10
    Tencent-Hunyuan-Large

    Tencent-Hunyuan-Large

    Open-source large language model family from Tencent Hunyuan

    ...It aims to provide competitive capability with efficient deployment and inference. FP8 quantization support to reduce memory usage (~50%) while maintaining precision. High benchmarking performance on tasks like MMLU, MATH, CMMLU, C-Eval, etc.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    BitNet

    BitNet

    Inference framework for 1-bit LLMs

    BitNet (bitnet.cpp) is a high-performance inference framework designed to optimize the execution of 1-bit large language models, making them more efficient for edge devices and local deployment. The framework offers significant speedups and energy reductions, achieving up to 6.17x faster performance on x86 CPUs and 70% energy savings, allowing the running of models such as the BitNet b1.58 100B with impressive efficiency. With support for lossless inference and enhanced processing power,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    MuJoCo MPC

    MuJoCo MPC

    Real-time behaviour synthesis with MuJoCo, using Predictive Control

    ...The system supports multi-shooting optimization, enabling precise motion planning across diverse domains like quadruped locomotion, humanoid tracking, and dexterous manipulation. In addition to its C++ core, MJPC includes an experimental Python API, enabling integration with custom models and MuJoCo tasks for flexible scripting and experimentation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    rwkv.cpp

    rwkv.cpp

    INT4/INT5/INT8 and FP16 inference on CPU for RWKV language model

    Besides the usual FP32, it supports FP16, quantized INT4, INT5 and INT8 inference. This project is focused on CPU, but cuBLAS is also supported. RWKV is a novel large language model architecture, with the largest model in the family having 14B parameters. In contrast to Transformer with O(n^2) attention, RWKV requires only state from the previous step to calculate logits. This makes RWKV very CPU-friendly on large context lengths.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Seamless Communication

    Seamless Communication

    Foundational Models for State-of-the-Art Speech and Text Translation

    Seamless Communication is a research project focused on building more integrated, low-latency multimodal communication between humans and AI agents. The motivation is to move beyond “text in, text out” and enable direct, live, multi-turn exchange involving language, gesture, gaze, vision, and modality switching without user friction. The system architecture includes a real-time multimodal signal pipeline for audio, video, and sensor data, a dialog manager that can decide when to act (speak,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    DeepGEMM

    DeepGEMM

    Clean and efficient FP8 GEMM kernels with fine-grained scaling

    DeepGEMM is a specialized CUDA library for efficient, high-performance general matrix multiplication (GEMM) operations, with particular focus on low-precision formats such as FP8 (and experimental support for BF16). The library is designed to work cleanly and simply, avoiding overly templated or heavily abstracted code, while still delivering performance that rivals expert-tuned libraries. It supports both standard and “grouped” GEMMs, which is useful for architectures like Mixture of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    FlashMLA

    FlashMLA

    FlashMLA: Efficient Multi-head Latent Attention Kernels

    FlashMLA is a high-performance decoding kernel library designed especially for Multi-Head Latent Attention (MLA) workloads, targeting NVIDIA Hopper GPU architectures. It provides optimized kernels for MLA decoding, including support for variable-length sequences, helping reduce latency and increase throughput in model inference systems using that attention style. The library supports both BF16 and FP16 data types, and includes a paged KV cache implementation with a block size of 64 to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    xFormers

    xFormers

    Hackable and optimized Transformers building blocks

    ...One of its key goals is efficient attention: it supports dense, sparse, low-rank, and approximate attention mechanisms (e.g. FlashAttention, Linformer, Performer) via interchangeable modules. The library includes memory-efficient operator implementations in both Python and optimized C++/CUDA, ensuring that performance isn’t sacrificed for modularity. It also integrates with PyTorch seamlessly so you can drop in its blocks to existing models, replace default attention layers, or build new architectures from scratch. xformers includes training, deployment, and memory profiling tools.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Piper TTS

    Piper TTS

    A fast, local neural text to speech system

    Piper is a fast, local neural text-to-speech (TTS) system developed by the Rhasspy team. Optimized for devices like the Raspberry Pi 4, Piper enables high-quality speech synthesis without relying on cloud services, making it ideal for privacy-conscious applications. It utilizes ONNX models trained with VITS to deliver natural-sounding voices across various languages and accents. Piper is particularly suited for offline voice assistants and embedded systems.
    Downloads: 418 This Week
    Last Update:
    See Project
  • 19
    FLUX.1 Krea

    FLUX.1 Krea

    Powerful open source image generation model

    FLUX.1 Krea [dev] is an open-source 12-billion parameter image generation model developed collaboratively by Krea and Black Forest Labs, designed to deliver superior aesthetic control and high image quality. It is a rectified-flow model distilled from the original Krea 1, providing enhanced sampling efficiency through classifier-free guidance distillation.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 20
    Proximus for Ryzen AI

    Proximus for Ryzen AI

    Runtime extension of Proximus enabling Deployment on AMD Ryzen™ AI

    This project extends the Proximus development environment to support deployment of AI workloads on next-generation AMD Ryzen™ AI processors, such as the Ryzen™ AI 7 PRO 7840U featured in the Lenovo ThinkPad T14s Gen 4 ,one of the first true AI PCs with an onboard Neural Processing Unit (NPU) capable of 16 TOPS (trillion operations per second). Originally designed for use with Windows 11 Pro, this runtime was further enhanced to work under Linux environments, allowing developers and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    LLaMA.go

    LLaMA.go

    llama.go is like llama.cpp in pure Golang

    llama.go is like llama.cpp in pure Golang. The code of the project is based on the legendary ggml.cpp framework of Georgi Gerganov written in C++ with the same attitude to performance and elegance. Both models store FP32 weights, so you'll needs at least 32Gb of RAM (not VRAM or GPU RAM) for LLaMA-7B. Double to 64Gb for LLaMA-13B.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Alpaca.cpp

    Alpaca.cpp

    Locally run an Instruction-Tuned Chat-Style LLM

    Run a fast ChatGPT-like model locally on your device. This combines the LLaMA foundation model with an open reproduction of Stanford Alpaca a fine-tuning of the base model to obey instructions (akin to the RLHF used to train ChatGPT) and a set of modifications to llama.cpp to add a chat interface. Download the zip file corresponding to your operating system from the latest release. The weights are based on the published fine-tunes from alpaca-lora, converted back into a PyTorch checkpoint...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    AICommand

    AICommand

    ChatGPT integration with Unity Editor

    AICommand is a proof-of-concept integration that lets you control the Unity Editor using natural language via ChatGPT. Instead of manually hunting through menus or writing editor scripts, you can prompt the editor to perform tasks, generate snippets, and automate actions. The project showcases an emerging workflow where LLMs augment game and tooling development by understanding intent and producing editor-side outcomes. It provides a minimal setup that connects your OpenAI API key and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    StarSpace

    StarSpace

    Learning embeddings for classification, retrieval and ranking

    StarSpace is a general-purpose embedding-based learning framework that trains embeddings for entities (words, sentences, users, items) under various supervision signals (classification, ranking, matching). Instead of focusing on one task, StarSpace supports multi-task and multi-domain setups—for instance, you can train embeddings so that textual queries match item descriptions, sentences map to labels, or users align with liked items in the same embedding space. The training objective is...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    DeepSDF

    DeepSDF

    Learning Continuous Signed Distance Functions for Shape Representation

    DeepSDF is a deep learning framework for continuous 3D shape representation using Signed Distance Functions (SDFs), as presented in the CVPR 2019 paper DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation by Park et al. The framework learns a continuous implicit function that maps 3D coordinates to their corresponding signed distances from object surfaces, allowing compact, high-fidelity shape modeling. Unlike traditional discrete voxel grids or meshes, DeepSDF...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next