...The repository describes how they use recursive proof decomposition by prompting DeepSeek-V3 to break complex theorems into subgoals, synthesize proof sketches, and then combine them to bootstrap training data. They then fine-tune via reinforcement learning with binary correct/incorrect feedback to integrate informal reasoning with formal proof behavior. The repo releases two model sizes (7B and 671B) and provides evaluation performance (e.g. pass rates on MiniF2F, results on ProverBench) as well as prompt / usage examples for proof generation in Lean 4. ...