Showing 11 open source projects for "all to"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 1
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    ...It accepts both text prompts (open-vocabulary concepts like “red car” or “goalkeeper in white”) and visual prompts (points, boxes, masks) and returns high-quality masks, boxes, and scores for the requested concepts. Compared with SAM 2, SAM 3 introduces the ability to exhaustively segment all instances of an open-vocabulary concept specified by a short phrase or exemplars, scaling to a vastly larger set of categories than traditional closed-set models. This capability is grounded in a new data engine that automatically annotated over four million unique concepts, producing a massive open-vocabulary segmentation dataset and enabling the model to achieve 75–80% of human performance on the SA-CO benchmark, which itself spans 270K unique concepts.
    Downloads: 109 This Week
    Last Update:
    See Project
  • 2
    VibeVoice

    VibeVoice

    Open-source multi-speaker long-form text-to-speech model

    ...Training involved curriculum learning with increasing sequence lengths up to 65K tokens, allowing VibeVoice to handle very long dialogues effectively. Safety mechanisms include an audible disclaimer and imperceptible watermarking in all generated audio to mitigate misuse risks.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 3
    Anthropic SDK Python

    Anthropic SDK Python

    Provides convenient access to the Anthropic REST API from any Python 3

    ...It is designed to provide a user-friendly, type-safe, and asynchronous/synchronous capable interface for making chat/completion requests to models like Claude. The library includes definitions for all request and response parameters using Python typed objects, automatically handles serialization and deserialization, and wraps HTTP logic (timeouts, retries, error mapping) so that developers can call the API in a clean, high-level way. The SDK supports both synchronous and asynchronous usage (via async/await) depending on context. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    Qwen3-Omni

    Qwen3-Omni

    Qwen3-omni is a natively end-to-end, omni-modal LLM

    ...It uses a Thinker-Talker architecture with a Mixture-of-Experts (MoE) design, early text-first pretraining, and mixed multimodal training to support strong performance across all modalities without sacrificing text or image quality. The model supports 119 text languages, 19 speech input languages, and 10 speech output languages. It achieves state-of-the-art results: across 36 audio and audio-visual benchmarks, it hits open-source SOTA on 32 and overall SOTA on 22, outperforming or matching strong closed-source models such as Gemini-2.5 Pro and GPT-4o. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • D&B Hoovers is Your Sales Accelerator Icon
    D&B Hoovers is Your Sales Accelerator

    For sales teams that want to accelerate B2B sales with better data

    Speed up sales prospecting with the rich audience targeting capabilities of D&B Hoovers so you can spend more sales time closing.
    Learn More
  • 5
    Perception Models

    Perception Models

    State-of-the-art Image & Video CLIP, Multimodal Large Language Models

    ...The PE module is a family of vision encoders designed to excel in image and video understanding, surpassing models like SigLIP2, InternVideo2, and DINOv2 across multiple benchmarks. Meanwhile, PLM integrates with PE to power vision-language modeling, achieving results competitive with leading multimodal systems such as QwenVL2.5 and InternVL3, all while being fully reproducible with open data. The project supports a wide range of research applications, from visual recognition and dense prediction to fine-grained multimodal understanding. Additionally, it includes several large-scale open datasets for both image and video perception.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    AI Models

    AI Models

    A repository of trained models

    All models (at least currently) are supported by chaiNNer, an upscaling GUI that allows for both very simple and very complex tasks to be completed in a nice manner where you "chain" nodes together. Highly recommended for images. If you're looking to upscale videos using the models then use enhancr simply due to the fact that it supports TensorRT, which will allow you to upscale videos at incredible speeds!
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    MaskFormer

    MaskFormer

    Per-Pixel Classification is Not All You Need for Semantic Segmentation

    ...The model achieves strong performance and scalability while simplifying training and evaluation workflows. Its successor, Mask2Former, extends the same meta-architecture to achieve state-of-the-art results across all major segmentation benchmarks. MaskFormer’s modular design, dataset integration, and compatibility with existing Detectron2 models make it an essential research tool.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    ...NB, while neo can technically run a training step at 200B+ parameters, it is very inefficient at those scales. This, as well as the fact that many GPUs became available to us, among other things, prompted us to move development over to GPT-NeoX. All evaluations were done using our evaluation harness. Some results for GPT-2 and GPT-3 are inconsistent with the values reported in the respective papers. We are currently looking into why, and would greatly appreciate feedback and further testing of our eval harness.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    t5-base

    t5-base

    Flexible text-to-text transformer model for multilingual NLP tasks

    t5-base is a pre-trained transformer model from Google’s T5 (Text-To-Text Transfer Transformer) family that reframes all NLP tasks into a unified text-to-text format. With 220 million parameters, it can handle a wide range of tasks, including translation, summarization, question answering, and classification. Unlike traditional models like BERT, which output class labels or spans, T5 always generates text outputs. It was trained on the C4 dataset, along with a variety of supervised NLP benchmarks, using both unsupervised denoising and supervised objectives. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 10
    t5-small

    t5-small

    T5-Small: Lightweight text-to-text transformer for NLP tasks

    T5-Small is a lightweight variant of the Text-To-Text Transfer Transformer (T5), designed to handle a wide range of NLP tasks using a unified text-to-text approach. Developed by researchers at Google, this model reframes all tasks—such as translation, summarization, classification, and question answering—into the format of input and output as plain text strings. With only 60 million parameters, T5-Small is compact and suitable for fast inference or deployment in constrained environments. It was pretrained on the C4 dataset using both unsupervised denoising and supervised learning on tasks like sentiment analysis, NLI, and QA. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Bio_ClinicalBERT

    Bio_ClinicalBERT

    ClinicalBERT model trained on MIMIC notes for clinical NLP tasks

    Bio_ClinicalBERT is a domain-specific language model tailored for clinical natural language processing (NLP), extending BioBERT with additional training on clinical notes. It was initialized from BioBERT-Base v1.0 and further pre-trained on all clinical notes from the MIMIC-III database (~880M words), which includes ICU patient records. The training focused on improving performance in tasks like named entity recognition and natural language inference within the healthcare domain. Notes were processed using rule-based sectioning and tokenized with SciSpacy. Training was done for 150,000 steps using a batch size of 32, max sequence length of 128, and a masked language modeling objective with a 0.15 mask probability. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next