Showing 46 open source projects for "framework python"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 1
    4M

    4M

    4M: Massively Multimodal Masked Modeling

    4M is a training framework for “any-to-any” vision foundation models that uses tokenization and masking to scale across many modalities and tasks. The same model family can classify, segment, detect, caption, and even generate images, with a single interface for both discriminative and generative use. The repository releases code and models for multiple variants (e.g., 4M-7 and 4M-21), emphasizing transfer to unseen tasks and modalities. Training/inference configs and issues discuss things...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    MetaCLIP

    MetaCLIP

    ICLR2024 Spotlight: curation/training code, metadata, distribution

    MetaCLIP is a research codebase that extends the CLIP framework into a meta-learning / continual learning regime, aiming to adapt CLIP-style models to new tasks or domains efficiently. The goal is to preserve CLIP’s strong zero-shot transfer capability while enabling fast adaptation to domain shifts or novel class sets with minimal data and without catastrophic forgetting. The repository provides training logic, adaptation strategies (e.g. prompt tuning, adapter modules), and evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Step1X-3D

    Step1X-3D

    High-Fidelity and Controllable Generation of Textured 3D Assets

    Step1X-3D is an open-source framework for generating high-fidelity textured 3D assets from scratch — both their geometry and surface textures — using modern generative AI techniques. It combines a hybrid architecture: a geometry generation stage using a VAE-DiT model to output a watertight 3D representation (e.g. TSDF surface), and a texture synthesis stage that conditions on geometry and optionally reference input (or prompts) to produce view-consistent textures using a diffusion-based...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Perception Models

    Perception Models

    State-of-the-art Image & Video CLIP, Multimodal Large Language Models

    Perception Models is a state-of-the-art framework developed by Facebook Research for advanced image and video perception tasks. It introduces two primary components: the Perception Encoder (PE) for visual feature extraction and the Perception Language Model (PLM) for multimodal decoding and reasoning. The PE module is a family of vision encoders designed to excel in image and video understanding, surpassing models like SigLIP2, InternVideo2, and DINOv2 across multiple benchmarks. Meanwhile,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 5
    Step1X-Edit

    Step1X-Edit

    A SOTA open-source image editing model

    Step1X-Edit is a state-of-the-art open-source image editing model/framework that uses a multimodal large language model (LLM) together with a diffusion-based image decoder to let users edit images simply via natural-language instructions plus a reference image. You supply an existing image and a textual command — e.g. “add a ruby pendant on the girl’s neck” or “make the background a sunset over mountains” — and the model interprets the instruction, computes a latent embedding combining the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    MiniMax-01

    MiniMax-01

    Large-language-model & vision-language-model based on Linear Attention

    MiniMax-01 is the official repository for two flagship models: MiniMax-Text-01, a long-context language model, and MiniMax-VL-01, a vision-language model built on top of it. MiniMax-Text-01 uses a hybrid attention architecture that blends Lightning Attention, standard softmax attention, and Mixture-of-Experts (MoE) routing to achieve both high throughput and long-context reasoning. It has 456 billion total parameters with 45.9 billion activated per token and is trained with advanced parallel...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Demucs

    Demucs

    Code for the paper Hybrid Spectrogram and Waveform Source Separation

    Demucs (Deep Extractor for Music Sources) is a deep-learning framework for music source separation—extracting individual instrument or vocal tracks from a mixed audio file. The system is based on a U-Net-like convolutional architecture combined with recurrent and transformer elements to capture both short-term and long-term temporal structure. It processes raw waveforms directly rather than spectrograms, allowing for higher-quality reconstruction and fewer artifacts in separated tracks. The...
    Downloads: 19 This Week
    Last Update:
    See Project
  • 8
    GLM-130B

    GLM-130B

    GLM-130B: An Open Bilingual Pre-Trained Model (ICLR 2023)

    GLM-130B is an open bilingual (English and Chinese) dense language model with 130 billion parameters, released by the Tsinghua KEG Lab and collaborators as part of the General Language Model (GLM) series. It is designed for large-scale inference and supports both left-to-right generation and blank filling, making it versatile across NLP tasks. Trained on over 400 billion tokens (200B English, 200B Chinese), it achieves performance surpassing GPT-3 175B, OPT-175B, and BLOOM-176B on multiple...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    Metaseq

    Metaseq

    Repo for external large-scale work

    Metaseq is a flexible, high-performance framework for training and serving large-scale sequence models, such as language models, translation systems, and instruction-tuned LLMs. Built on top of PyTorch, it provides distributed training, model sharding, mixed-precision computation, and memory-efficient checkpointing to support models with hundreds of billions of parameters. The framework was used internally at Meta to train models like OPT (Open Pre-trained Transformer) and serves as a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 10
    ToMe (Token Merging)

    ToMe (Token Merging)

    A method to increase the speed and lower the memory footprint

    ToMe (Token Merging) is a PyTorch-based optimization framework designed to significantly accelerate Vision Transformer (ViT) architectures without retraining. Developed by researchers at Facebook (Meta AI), ToMe introduces an efficient technique that merges similar tokens within transformer layers, reducing redundant computation while preserving model accuracy. This approach differs from token pruning, which removes background tokens entirely; instead, ToMe merges tokens based on feature...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    ConvNeXt V2

    ConvNeXt V2

    Code release for ConvNeXt V2 model

    ConvNeXt V2 is an evolution of the ConvNeXt architecture that co-designs convolutional networks alongside self-supervised learning. The V2 version introduces a fully convolutional masked autoencoder (FCMAE) framework where parts of the image are masked and the network reconstructs the missing content, marrying convolutional inductive bias with powerful pretraining. A key innovation is a new Global Response Normalization (GRN) layer added to the ConvNeXt backbone, which enhances feature...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    minGPT

    minGPT

    A minimal PyTorch re-implementation of the OpenAI GPT

    minGPT is a minimalist, educational re-implementation of the GPT (Generative Pretrained Transformer) architecture built in PyTorch, designed by Andrej Karpathy to expose the core structure of a transformer-based language model in as few lines of code as possible. It strips away extraneous bells and whistles, aiming to show how a sequence of token indices is fed into a stack of transformer blocks and then decoded into the next token probabilities, with both training and inference supported....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    MaskFormer

    MaskFormer

    Per-Pixel Classification is Not All You Need for Semantic Segmentation

    MaskFormer is a unified framework for image segmentation developed by Facebook Research, designed to bridge the gap between semantic, instance, and panoptic segmentation within a single architecture. Unlike traditional segmentation pipelines that treat these tasks separately, MaskFormer reformulates segmentation as a mask classification problem, enabling a consistent and efficient approach across multiple segmentation domains. Built on top of Detectron2, it supports a wide range of datasets...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    PyTorch GAN Zoo

    PyTorch GAN Zoo

    A mix of GAN implementations including progressive growing

    PyTorch GAN Zoo is a comprehensive open research toolbox designed for experimenting with and developing Generative Adversarial Networks (GANs) using PyTorch. The project provides modular implementations of popular GAN architectures, including Progressive Growing of GANs (PGAN), DCGAN, and an experimental StyleGAN version. It is built to support both researchers and developers who want to train, evaluate, and extend GANs efficiently across diverse datasets such as CelebA-HQ, FashionGen, DTD,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DeepSDF

    DeepSDF

    Learning Continuous Signed Distance Functions for Shape Representation

    DeepSDF is a deep learning framework for continuous 3D shape representation using Signed Distance Functions (SDFs), as presented in the CVPR 2019 paper DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation by Park et al. The framework learns a continuous implicit function that maps 3D coordinates to their corresponding signed distances from object surfaces, allowing compact, high-fidelity shape modeling. Unlike traditional discrete voxel grids or meshes, DeepSDF...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    MUSE

    MUSE

    A library for Multilingual Unsupervised or Supervised word Embeddings

    MUSE is a framework for learning multilingual word embeddings that live in a shared space, enabling bilingual lexicon induction, cross-lingual retrieval, and zero-shot transfer. It supports both supervised alignment with seed dictionaries and unsupervised alignment that starts without parallel data by using adversarial initialization followed by Procrustes refinement. The code can align pre-trained monolingual embeddings (such as fastText) across dozens of languages and provides standardized...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    DeepSeek-V3.2-Speciale

    DeepSeek-V3.2-Speciale

    High-compute ultra-reasoning model surpassing model surpassing GPT-5

    DeepSeek-V3.2-Speciale is the high-compute, ultra-reasoning variant of DeepSeek-V3.2, designed specifically to push the boundaries of mathematical, logical, and algorithmic intelligence. It builds on the DeepSeek Sparse Attention (DSA) framework, delivering dramatically improved long-context efficiency while preserving full model quality. Unlike the standard version, Speciale is tuned exclusively for deep reasoning and therefore does not support tool-calling, focusing its full capacity on...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    DeepSeek-V3.2

    DeepSeek-V3.2

    High-efficiency reasoning and agentic intelligence model

    DeepSeek-V3.2 is a cutting-edge large language model developed by DeepSeek-AI, focused on achieving high reasoning accuracy and computational efficiency for agentic tasks. It introduces DeepSeek Sparse Attention (DSA), a new attention mechanism that dramatically reduces computational overhead while maintaining strong long-context performance. Built with a scalable reinforcement learning framework, it reaches near-GPT-5 levels of reasoning and outperforms comparable models like DeepSeek-V3.1...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Hunyuan-MT-7B

    Hunyuan-MT-7B

    Tencent’s 36-language state-of-the-art translation model

    Hunyuan-MT-7B is a large-scale multilingual translation model developed by Tencent, designed to deliver state-of-the-art translation quality across 36 languages, including several Chinese ethnic minority languages. It forms part of the Hunyuan Translation Model family, alongside Hunyuan-MT-Chimera, which ensembles outputs for even higher accuracy. Trained with a comprehensive framework spanning pretraining, cross-lingual pretraining, supervised fine-tuning, enhancement, and ensemble...
    Downloads: 0 This Week
    Last Update:
    See Project