Showing 16 open source projects for "artificial intelligence python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Turn traffic into pipeline and prospects into customers Icon
    Turn traffic into pipeline and prospects into customers

    For account executives and sales engineers looking for a solution to manage their insights and sales data

    Docket is an AI-powered sales enablement platform designed to unify go-to-market (GTM) data through its proprietary Sales Knowledge Lake™ and activate it with intelligent AI agents. The platform helps marketing teams increase pipeline generation by 15% by engaging website visitors in human-like conversations and qualifying leads. For sales teams, Docket improves seller efficiency by 33% by providing instant product knowledge, retrieving collateral, and creating personalized documents. Built for GTM teams, Docket integrates with over 100 tools across the revenue tech stack and offers enterprise-grade security with SOC 2 Type II, GDPR, and ISO 27001 compliance. Customers report improved win rates, shorter sales cycles, and dramatically reduced response times. Docket’s scalable, accurate, and fast AI agents deliver reliable answers with confidence scores, empowering teams to close deals faster.
    Learn More
  • 1
    llama.cpp

    llama.cpp

    Port of Facebook's LLaMA model in C/C++

    The llama.cpp project enables the inference of Meta's LLaMA model (and other models) in pure C/C++ without requiring a Python runtime. It is designed for efficient and fast model execution, offering easy integration for applications needing LLM-based capabilities. The repository focuses on providing a highly optimized and portable implementation for running large language models directly within C/C++ environments.
    Downloads: 90 This Week
    Last Update:
    See Project
  • 2
    ChatGLM.cpp

    ChatGLM.cpp

    C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4(V)

    ChatGLM.cpp is a C++ implementation of the ChatGLM-6B model, enabling efficient local inference without requiring a Python environment. It is optimized for running on consumer hardware.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    rwkv.cpp

    rwkv.cpp

    INT4/INT5/INT8 and FP16 inference on CPU for RWKV language model

    Besides the usual FP32, it supports FP16, quantized INT4, INT5 and INT8 inference. This project is focused on CPU, but cuBLAS is also supported. RWKV is a novel large language model architecture, with the largest model in the family having 14B parameters. In contrast to Transformer with O(n^2) attention, RWKV requires only state from the previous step to calculate logits. This makes RWKV very CPU-friendly on large context lengths.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    CodeGeeX

    CodeGeeX

    CodeGeeX: An Open Multilingual Code Generation Model (KDD 2023)

    CodeGeeX is a large-scale multilingual code generation model with 13 billion parameters, trained on 850B tokens across more than 20 programming languages. Developed with MindSpore and later made PyTorch-compatible, it is capable of multilingual code generation, cross-lingual code translation, code completion, summarization, and explanation. It has been benchmarked on HumanEval-X, a multilingual program synthesis benchmark introduced alongside the model, and achieves state-of-the-art...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Dun and Bradstreet Connect simplifies the complex burden of data management Icon
    Dun and Bradstreet Connect simplifies the complex burden of data management

    Our self-service data management platform enables your organization to gain a complete and accurate view of your accounts and contacts.

    The amount, speed, and types of data created in today’s world can be overwhelming. With D&B Connect, you can instantly benchmark, enrich, and monitor your data against the Dun & Bradstreet Data Cloud to help ensure your systems of record have trusted data to fuel growth.
    Learn More
  • 5
    AlphaFold 3

    AlphaFold 3

    AlphaFold 3 inference pipeline

    AlphaFold 3, developed by Google DeepMind, is an advanced deep learning system for predicting biomolecular structures and interactions with exceptional accuracy. This repository provides the complete inference pipeline for running AlphaFold 3, though access to the model parameters is restricted and must be obtained directly from Google under specific terms of use. The system is designed for scientific research applications in structural biology, biochemistry, and bioinformatics, enabling...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    MuJoCo MPC

    MuJoCo MPC

    Real-time behaviour synthesis with MuJoCo, using Predictive Control

    MuJoCo MPC (MJPC) is an advanced interactive framework for real-time model predictive control (MPC) built on top of the MuJoCo physics engine, developed by Google DeepMind. It allows researchers and roboticists to design, visualize, and execute complex control tasks for simulated or real robotic systems. MJPC integrates a high-performance GUI and multiple predictive control algorithms, including iLQG, gradient descent, and Predictive Sampling — a competitive, derivative-free method that...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Piper TTS

    Piper TTS

    A fast, local neural text to speech system

    Piper is a fast, local neural text-to-speech (TTS) system developed by the Rhasspy team. Optimized for devices like the Raspberry Pi 4, Piper enables high-quality speech synthesis without relying on cloud services, making it ideal for privacy-conscious applications. It utilizes ONNX models trained with VITS to deliver natural-sounding voices across various languages and accents. Piper is particularly suited for offline voice assistants and embedded systems.
    Downloads: 228 This Week
    Last Update:
    See Project
  • 8
    VMZ (Video Model Zoo)

    VMZ (Video Model Zoo)

    VMZ: Model Zoo for Video Modeling

    The codebase was designed to help researchers and practitioners quickly reproduce FAIR’s results and leverage robust pre-trained backbones for downstream tasks. It also integrates Gradient Blending, an audio-visual modeling method that fuses modalities effectively (available in the Caffe2 implementation). Although VMZ is now archived and no longer actively maintained, it remains a valuable reference for understanding early large-scale video model training, transfer learning, and multimodal...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    fairseq2

    fairseq2

    FAIR Sequence Modeling Toolkit 2

    fairseq2 is a modern, modular sequence modeling framework developed by Meta AI Research as a complete redesign of the original fairseq library. Built from the ground up for scalability, composability, and research flexibility, fairseq2 supports a broad range of language, speech, and multimodal content generation tasks, including instruction fine-tuning, reinforcement learning from human feedback (RLHF), and large-scale multilingual modeling. Unlike the original fairseq—which evolved into a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Pest Control Management Software Icon
    Pest Control Management Software

    Pocomos is a cloud-based field service solution that caters to businesses

    Built for the pest control industry, but also works great for Mosquito Control, Bin Cleaning, Window Washing, Solar Panel Cleaning, and other Home Service Businesses in need of an easy-to-use software that helps you simplify routing, scheduling, communications, payment processing, truck tracking, time tracking, and reporting.
    Learn More
  • 10
    BitNet

    BitNet

    Inference framework for 1-bit LLMs

    BitNet (bitnet.cpp) is a high-performance inference framework designed to optimize the execution of 1-bit large language models, making them more efficient for edge devices and local deployment. The framework offers significant speedups and energy reductions, achieving up to 6.17x faster performance on x86 CPUs and 70% energy savings, allowing the running of models such as the BitNet b1.58 100B with impressive efficiency. With support for lossless inference and enhanced processing power,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    FlashMLA

    FlashMLA

    FlashMLA: Efficient Multi-head Latent Attention Kernels

    FlashMLA is a high-performance decoding kernel library designed especially for Multi-Head Latent Attention (MLA) workloads, targeting NVIDIA Hopper GPU architectures. It provides optimized kernels for MLA decoding, including support for variable-length sequences, helping reduce latency and increase throughput in model inference systems using that attention style. The library supports both BF16 and FP16 data types, and includes a paged KV cache implementation with a block size of 64 to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DeepGEMM

    DeepGEMM

    Clean and efficient FP8 GEMM kernels with fine-grained scaling

    DeepGEMM is a specialized CUDA library for efficient, high-performance general matrix multiplication (GEMM) operations, with particular focus on low-precision formats such as FP8 (and experimental support for BF16). The library is designed to work cleanly and simply, avoiding overly templated or heavily abstracted code, while still delivering performance that rivals expert-tuned libraries. It supports both standard and “grouped” GEMMs, which is useful for architectures like Mixture of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Proximus for Ryzen AI

    Proximus for Ryzen AI

    Runtime extension of Proximus enabling Deployment on AMD Ryzen™ AI

    This project extends the Proximus development environment to support deployment of AI workloads on next-generation AMD Ryzen™ AI processors, such as the Ryzen™ AI 7 PRO 7840U featured in the Lenovo ThinkPad T14s Gen 4 ,one of the first true AI PCs with an onboard Neural Processing Unit (NPU) capable of 16 TOPS (trillion operations per second). Originally designed for use with Windows 11 Pro, this runtime was further enhanced to work under Linux environments, allowing developers and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Alpaca.cpp

    Alpaca.cpp

    Locally run an Instruction-Tuned Chat-Style LLM

    Run a fast ChatGPT-like model locally on your device. This combines the LLaMA foundation model with an open reproduction of Stanford Alpaca a fine-tuning of the base model to obey instructions (akin to the RLHF used to train ChatGPT) and a set of modifications to llama.cpp to add a chat interface. Download the zip file corresponding to your operating system from the latest release. The weights are based on the published fine-tunes from alpaca-lora, converted back into a PyTorch checkpoint...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 15
    StarSpace

    StarSpace

    Learning embeddings for classification, retrieval and ranking

    StarSpace is a general-purpose embedding-based learning framework that trains embeddings for entities (words, sentences, users, items) under various supervision signals (classification, ranking, matching). Instead of focusing on one task, StarSpace supports multi-task and multi-domain setups—for instance, you can train embeddings so that textual queries match item descriptions, sentences map to labels, or users align with liked items in the same embedding space. The training objective is...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    DeepSDF

    DeepSDF

    Learning Continuous Signed Distance Functions for Shape Representation

    DeepSDF is a deep learning framework for continuous 3D shape representation using Signed Distance Functions (SDFs), as presented in the CVPR 2019 paper DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation by Park et al. The framework learns a continuous implicit function that maps 3D coordinates to their corresponding signed distances from object surfaces, allowing compact, high-fidelity shape modeling. Unlike traditional discrete voxel grids or meshes, DeepSDF...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next