33 projects for "visual" with 2 filters applied:

  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Fast, Reliable VPS Hosting Icon
    Fast, Reliable VPS Hosting

    Deploy cloud servers instantly.

    With our comprehensive suite of scalable cloud services, you can build your cloud server, your way. Kamatera’s infrastructure specializes in VPS hosting, with a choice of 24 data centers worldwide, including 8 data centers across the US as well as locations in Europe, Asia, and the Middle East.
    Learn More
  • 1
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    SAM 3 (Segment Anything Model 3) is a unified foundation model for promptable segmentation in both images and videos, capable of detecting, segmenting, and tracking objects. It accepts both text prompts (open-vocabulary concepts like “red car” or “goalkeeper in white”) and visual prompts (points, boxes, masks) and returns high-quality masks, boxes, and scores for the requested concepts. Compared with SAM 2, SAM 3 introduces the ability to exhaustively segment all instances of an open-vocabulary concept specified by a short phrase or exemplars, scaling to a vastly larger set of categories than traditional closed-set models. ...
    Downloads: 108 This Week
    Last Update:
    See Project
  • 2
    Moondream

    Moondream

    Tiny vision language model

    ...It serves as both a playground for the author’s artistic curiosity and a resource for other creative coders interested in generative art techniques. The repository may include shaders, canvas/WebGL code, visual demos, and utilities that demonstrate how mathematical functions or noise patterns can be harnessed for compelling visuals.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    ComfyUI-LTXVideo

    ComfyUI-LTXVideo

    LTX-Video Support for ComfyUI

    ComfyUI-LTXVideo is a bridge between ComfyUI’s node-based generative workflow environment and the LTX-Video multimedia processing framework, enabling creators to orchestrate complex video tasks within a visual graph paradigm. Instead of writing code to apply effects, transitions, edits, and data flows, users can assemble nodes that represent video inputs, transformations, and outputs, letting them prototype and automate video production pipelines visually. This integration empowers non-programmers and rapid-iteration teams to harness the performance of LTX-Video while maintaining the clarity and flexibility of a dataflow graph model. ...
    Downloads: 12 This Week
    Last Update:
    See Project
  • 4
    Janus

    Janus

    Unified Multimodal Understanding and Generation Models

    Janus is a sophisticated open-source project from DeepSeek AI that aims to unify both visual understanding and image generation in a single model architecture. Rather than having separate systems for “look and describe” and “prompt and generate”, Janus uses an autoregressive transformer framework with a decoupled visual encoder—allowing it to ingest images for comprehension and to produce images from text prompts with shared internal representations.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Self-hosted n8n: No-code AI workflows Icon
    Self-hosted n8n: No-code AI workflows

    Connect workflows. Integrate data

    A free-to-use workflow automation tool, n8n lets you connect all your apps and data in one customizable, no-code platform. Design workflows and process data from a simple, unified dashboard.
    Learn More
  • 5
    GLM-Image

    GLM-Image

    GLM-Image: Auto-regressive for Dense-knowledge and High-fidelity Image

    ...It excels at generating images that include complex layouts and detailed text content, making it especially useful for posters, diagrams, info-graphics, social media graphics, and visual content that requires precise text placement and semantic alignment. Because it blends linguistic reasoning with image synthesis, GLM-Image produces visual outputs where semantic relationships and textual accuracy are prioritized alongside artistic style and realism, and its model structure enables it to handle dense visual knowledge tasks that challenge many pure diffusion models. ...
    Downloads: 11 This Week
    Last Update:
    See Project
  • 6
    Qwen-Image-Layered

    Qwen-Image-Layered

    Qwen-Image-Layered: Layered Decomposition for Inherent Editablity

    Qwen-Image-Layered is an extension of the Qwen series of multimodal models that introduces layered image understanding, enabling the model to reason about hierarchical visual structures — such as separating foreground, background, objects, and contextual layers within an image. This architecture allows richer semantic interpretation, enabling use cases such as scene decomposition, object-level editing, layered captioning, and more fine-grained multimodal reasoning than with flat image encodings alone. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    FastVLM

    FastVLM

    This repository contains the official implementation of FastVLM

    ...The repository documents model variants, showcases head-to-head numbers against known baselines, and explains how the encoder integrates with common LLM backbones. Apple’s research brief frames FastVLM as targeting real-time or latency-sensitive scenarios, where lowering visual token pressure is critical to interactive UX. In short, it’s a practical recipe to make VLMs fast without exotic token-selection heuristics.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    DeepSeek VL

    DeepSeek VL

    Towards Real-World Vision-Language Understanding

    DeepSeek-VL is DeepSeek’s initial vision-language model that anchors their multimodal stack. It enables understanding and generation across visual and textual modalities—meaning it can process an image + a prompt, answer questions about images, caption, classify, or reason about visuals in context. The model is likely used internally as the visual encoder backbone for agent use cases, to ground perception in downstream tasks (e.g. answering questions about a screenshot). The repository includes model weights (or pointers to them), evaluation metrics on standard vision + language benchmarks, and configuration or architecture files. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    GLM-4.5V

    GLM-4.5V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    GLM-4.5V is the preceding iteration in the GLM-V series that laid much of the groundwork for general multimodal reasoning and vision-language understanding. It embodies the design philosophy of mixing visual and textual modalities into a unified model capable of general-purpose reasoning, content understanding, and generation, while already supporting a wide variety of tasks: from image captioning and visual question answering to content recognition, GUI-based agents, video understanding, and long-document interpretation. GLM-4.5V emerged from a training framework that leverages scalable reinforcement learning (with curriculum sampling) to boost performance across tasks ranging from STEM problem solving to long-context reasoning, giving it broad applicability beyond narrow benchmarks. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Papirfly: Best user-friendly DAM and Content Creation Software Icon
    Papirfly: Best user-friendly DAM and Content Creation Software

    The #1 solution to create and manage content. On‑brand. At scale.

    Papirfly provides a single online destination for all your employees and other stakeholders who are engaging with your brand, ensuring consistency in all aspects of their communications. Teams can produce infinite studio-standard marketing materials from bespoke templates, store, share and adapt them for their own markets and stay firmly educated on the brand’s purpose, guidelines and evolution – with no specialist skills or agency help necessary.
    Learn More
  • 10
    DINOv3

    DINOv3

    Reference PyTorch implementation and models for DINOv3

    DINOv3 is the third-generation iteration of Meta’s self-supervised visual representation learning framework, building upon the ideas from DINO and DINOv2. It continues the paradigm of learning strong image representations without labels using teacher–student distillation, but introduces a simplified and more scalable training recipe that performs well across datasets and architectures. DINOv3 removes the need for complex augmentations or momentum encoders, streamlining the pipeline while maintaining or improving feature quality. ...
    Downloads: 20 This Week
    Last Update:
    See Project
  • 11
    Step3-VL-10B

    Step3-VL-10B

    Multimodal model achieving SOTA performance

    Step3-VL-10B is an open-source multimodal foundation model developed by StepFun AI that pushes the boundaries of what compact models can achieve by combining visual and language understanding in a single architecture. Despite having only about 10 billion parameters, it delivers performance that rivals or even surpasses much larger models (10×–20× larger) on a wide range of multimodal benchmarks covering reasoning, perception, and complex tasks, positioning it as one of the most powerful models in its class. ...
    Downloads: 24 This Week
    Last Update:
    See Project
  • 12
    HunyuanVideo-Foley

    HunyuanVideo-Foley

    Multimodal Diffusion with Representation Alignment

    HunyuanVideo-Foley is a multimodal diffusion model from Tencent Hunyuan for high-fidelity Foley (sound effects) audio generation synchronized to video scenes. It is designed to generate audio that matches both visual content and textual semantic cues, for use in video production, film, advertising, games, etc. The model architecture aligns audio, video, and text representations to produce realistic synchronized soundtracks. Produces high-quality 48 kHz audio output suitable for professional use. Hybrid architecture combining multimodal transformer blocks and unimodal refinement blocks. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    LTX-2

    LTX-2

    Python inference and LoRA trainer package for the LTX-2 audio–video

    LTX-2 is a powerful, open-source toolkit developed by Lightricks that provides a modular, high-performance base for building real-time graphics and visual effects applications. It is architected to give developers low-level control over rendering pipelines, GPU resource management, shader orchestration, and cross-platform abstractions so they can craft visually compelling experiences without starting from scratch. Beyond basic rendering scaffolding, LTX-2 includes optimized math libraries, resource loaders, utilities for texture and buffer handling, and integration points for native event loops and input systems. ...
    Downloads: 26 This Week
    Last Update:
    See Project
  • 14
    DeepSeek VL2

    DeepSeek VL2

    Mixture-of-Experts Vision-Language Models for Advanced Multimodal

    ...or “Generate a caption appropriate to context”). The model supports both image understanding (vision tasks) and multimodal reasoning, and is likely used as a component in agent systems to process visual inputs as context for downstream tasks. The repository includes evaluation results (e.g. image/text alignment scores, common VL benchmarks), configuration files, and model weights (where permitted). While the internal architecture details are not fully documented publicly, the repo suggests that VL2 introduces enhancements over prior vision-language models (e.g. better scaling, cross-modal attention, more robust alignment) to improve grounding and multimodal understanding.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    GLM-4.6V

    GLM-4.6V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    GLM-4.6V represents the latest generation of the GLM-V family and marks a major step forward in multimodal AI by combining advanced vision-language understanding with native “tool-call” capabilities, long-context reasoning, and strong generalization across domains. Unlike many vision-language models that treat images and text separately or require intermediate conversions, GLM-4.6V allows inputs such as images, screenshots or document pages directly as part of its reasoning pipeline — and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    DeepSeek-OCR

    DeepSeek-OCR

    Contexts Optical Compression

    DeepSeek-OCR is an open-source optical character recognition solution built as part of the broader DeepSeek AI vision-language ecosystem. It is designed to extract text from images, PDFs, and scanned documents, and integrates with multimodal capabilities that understand layout, context, and visual elements beyond raw character recognition. The system treats OCR not simply as “read the text” but as “understand what the text is doing in the image”—for example distinguishing captions from body text, interpreting tables, or recognizing handwritten versus printed words. It supports local deployment, enabling organizations concerned about privacy or latency to run the pipeline on-premises rather than send sensitive documents to third-party cloud services. ...
    Downloads: 11 This Week
    Last Update:
    See Project
  • 17
    Seamless Communication

    Seamless Communication

    Foundational Models for State-of-the-Art Speech and Text Translation

    ...The system architecture includes a real-time multimodal signal pipeline for audio, video, and sensor data, a dialog manager that can decide when to act (speak, gesture, point) or query, and a cross-modal reasoning layer that fuses perception with semantic context. The research prototype includes components for visual grounding (understanding when a user references something in view), gesture recognition and synthesis, and turn-taking mechanisms that mirror human conversational timing. Because latency and synchronization are critical, the codebase invests in asynchronous scheduling, overlap of perception and reasoning, and fast fallback responses.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Map-Anything

    Map-Anything

    MapAnything: Universal Feed-Forward Metric 3D Reconstruction

    Map-Anything is a universal, feed-forward transformer for metric 3D reconstruction that predicts a scene’s geometry and camera parameters directly from visual inputs. Instead of stitching together many task-specific models, it uses a single architecture that supports a wide range of 3D tasks—multi-image structure-from-motion, multi-view stereo, monocular metric depth, registration, depth completion, and more. The model flexibly accepts different input combinations (images, intrinsics, poses, sparse or dense depth) and produces a rich set of outputs including per-pixel 3D points, camera intrinsics, camera poses, ray directions, confidence maps, and validity masks. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 19
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Oasis

    Oasis

    Inference script for Oasis 500M

    Open-Oasis provides inference code and released weights for Oasis 500M, an interactive world model that generates gameplay frames conditioned on user keyboard input. Instead of rendering a pre-built game world, the system produces the next visual state via a diffusion-transformer approach, effectively “imagining” the world response to your actions in real time. The project focuses on enabling action-conditional frame generation so developers can experiment with interactive, model-generated environments rather than static video generation alone. Because it’s an inference-focused repository, it’s especially useful as a practical reference for running the model, wiring inputs, and producing the autoregressive sequence of gameplay frames. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    MetaCLIP

    MetaCLIP

    ICLR2024 Spotlight: curation/training code, metadata, distribution

    ...It includes utilities to fine-tune vision-language embeddings, compute prompt or adapter updates, and benchmark across transfer and retention metrics. MetaCLIP is especially suited for real-world settings where a model must continuously incorporate new visual categories or domains over time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    MiniMax-01

    MiniMax-01

    Large-language-model & vision-language-model based on Linear Attention

    MiniMax-01 is the official repository for two flagship models: MiniMax-Text-01, a long-context language model, and MiniMax-VL-01, a vision-language model built on top of it. MiniMax-Text-01 uses a hybrid attention architecture that blends Lightning Attention, standard softmax attention, and Mixture-of-Experts (MoE) routing to achieve both high throughput and long-context reasoning. It has 456 billion total parameters with 45.9 billion activated per token and is trained with advanced parallel...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Style Aligned

    Style Aligned

    Official code for Style Aligned Image Generation via Shared Attention

    StyleAligned is a diffusion-model editing technique and codebase that preserves the visual “style” of an original image while applying new semantic edits driven by text. Instead of fully re-generating an image—and risking changes to lighting, texture, or rendering choices—the method aligns internal features across denoising steps so the target edit inherits the source style. This alignment acts like a constraint on the model’s evolution, steering composition, palette, and brushwork even as objects or attributes change. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the full image—making pretraining computationally efficient. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Qwen2.5-VL-7B-Instruct

    Qwen2.5-VL-7B-Instruct

    Multimodal 7B model for image, video, and text understanding tasks

    Qwen2.5-VL-7B-Instruct is a multimodal vision-language model developed by the Qwen team, designed to handle text, images, and long videos with high precision. Fine-tuned from Qwen2.5-VL, this 7-billion-parameter model can interpret visual content such as charts, documents, and user interfaces, as well as recognize common objects. It supports complex tasks like visual question answering, localization with bounding boxes, and structured output generation from documents. The model is also capable of video understanding with dynamic frame sampling and temporal reasoning, enabling it to analyze and respond to long-form videos. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next