67 projects for "using" with 2 filters applied:

  • Vibes don’t ship, Retool does Icon
    Vibes don’t ship, Retool does

    Start from a prompt and build production-ready apps on your data—with security, permissions, and compliance built in.

    Vibe coding tools create cool demos, but Retool helps you build software your company can actually use. Generate internal apps that connect directly to your data—deployed in your cloud with enterprise security from day one. Build dashboards, admin panels, and workflows with granular permissions already in place. Stop prototyping and ship on a platform that actually passes security review.
    Build apps that ship
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 1
    GLM-4.6

    GLM-4.6

    Agentic, Reasoning, and Coding (ARC) foundation models

    GLM-4.6 is the latest iteration of Zhipu AI’s foundation model, delivering significant advancements over GLM-4.5. It introduces an extended 200K token context window, enabling more sophisticated long-context reasoning and agentic workflows. The model achieves superior coding performance, excelling in benchmarks and practical coding assistants such as Claude Code, Cline, Roo Code, and Kilo Code. Its reasoning capabilities have been strengthened, including improved tool usage during inference...
    Downloads: 162 This Week
    Last Update:
    See Project
  • 2
    Z-Image

    Z-Image

    Image generation model with single-stream diffusion transformer

    Z-Image is an efficient, open-source image generation foundation model built to make high-quality image synthesis more accessible. With just 6 billion parameters — far fewer than many large-scale models — it uses a novel “single-stream diffusion Transformer” architecture to deliver photorealistic image generation, demonstrating that excellence does not always require extremely large model sizes. The project includes several variants: Z-Image-Turbo, a distilled version optimized for speed and...
    Downloads: 176 This Week
    Last Update:
    See Project
  • 3
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    SAM 3 (Segment Anything Model 3) is a unified foundation model for promptable segmentation in both images and videos, capable of detecting, segmenting, and tracking objects. It accepts both text prompts (open-vocabulary concepts like “red car” or “goalkeeper in white”) and visual prompts (points, boxes, masks) and returns high-quality masks, boxes, and scores for the requested concepts. Compared with SAM 2, SAM 3 introduces the ability to exhaustively segment all instances of an...
    Downloads: 108 This Week
    Last Update:
    See Project
  • 4
    DeepSeek-V3

    DeepSeek-V3

    Powerful AI language model (MoE) optimized for efficiency/performance

    DeepSeek-V3 is a robust Mixture-of-Experts (MoE) language model developed by DeepSeek, featuring a total of 671 billion parameters, with 37 billion activated per token. It employs Multi-head Latent Attention (MLA) and the DeepSeekMoE architecture to enhance computational efficiency. The model introduces an auxiliary-loss-free load balancing strategy and a multi-token prediction training objective to boost performance. Trained on 14.8 trillion diverse, high-quality tokens, DeepSeek-V3...
    Downloads: 58 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    OpenAI Quickstart Python

    OpenAI Quickstart Python

    Python example app from the OpenAI API quickstart tutorial

    openai-quickstart-python is an official OpenAI repository containing multiple Python quickstart applications that demonstrate how to use different OpenAI API endpoints, including Chat and Assistants. It provides practical, beginner-friendly examples to help developers quickly learn how to send requests, handle responses, and build basic applications using the OpenAI Python SDK. The examples folder includes small, self-contained projects showcasing common use cases like chat completions, tool usage, and interactive interfaces. Each example is designed to be easily runnable with minimal setup—requiring only Python, a virtual environment, and an API key. The repository also includes environment setup guides and example scripts, such as a simple Flask web app for chat interactions, allowing developers to test OpenAI API integrations locally. ...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 6
    Hunyuan3D-2.1

    Hunyuan3D-2.1

    From Images to High-Fidelity 3D Assets

    Hunyuan3D-2.1 is Tencent Hunyuan’s advanced 3D asset generation system that produces high-fidelity 3D models with Physically Based Rendering (PBR) textures. It is fully open-source with released model weights, training, and inference code. It improves on prior versions by using a PBR texture pipeline (enabling realistic material effects like reflections and subsurface scattering) and allowing community fine-tuning and extension. It supports both shape generation (mesh geometry) and texture generation modules. Physically Based Rendering texture synthesis to model realistic material effects, including reflections, subsurface scattering, etc. ...
    Downloads: 19 This Week
    Last Update:
    See Project
  • 7
    DINOv2

    DINOv2

    PyTorch code and models for the DINOv2 self-supervised learning

    DINOv2 is a self-supervised vision learning framework that produces strong, general-purpose image representations without using human labels. It builds on the DINO idea of student–teacher distillation and adapts it to modern Vision Transformer backbones with a carefully tuned recipe for data augmentation, optimization, and multi-crop training. The core promise is that a single pretrained backbone can transfer well to many downstream tasks—from linear probing on classification to retrieval, detection, and segmentation—often requiring little or no fine-tuning. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    DINOv3

    DINOv3

    Reference PyTorch implementation and models for DINOv3

    DINOv3 is the third-generation iteration of Meta’s self-supervised visual representation learning framework, building upon the ideas from DINO and DINOv2. It continues the paradigm of learning strong image representations without labels using teacher–student distillation, but introduces a simplified and more scalable training recipe that performs well across datasets and architectures. DINOv3 removes the need for complex augmentations or momentum encoders, streamlining the pipeline while maintaining or improving feature quality. The model supports multiple backbone architectures, including Vision Transformers (ViT), and can handle larger image resolutions with improved stability during training. ...
    Downloads: 12 This Week
    Last Update:
    See Project
  • 9
    DeepSeek Coder

    DeepSeek Coder

    DeepSeek Coder: Let the Code Write Itself

    ...The models are trained from scratch on a massive corpus (~2 trillion tokens), of which about 87% is code and 13% is natural language. This dataset covers project-level code structure (not just line-by-line snippets), using a large context window (e.g. 16K) and a secondary fill-in-the-blank objective to encourage better contextual completions and infilling. Multiple sizes of the model are offered (e.g. 1B, 5.7B, 6.7B, 33B) so users can trade off inference cost vs capability. The repo provides model weights, documentation on training setup, evaluation results on common benchmarks (HumanEval, MultiPL-E, APPS, etc.), and inference tools.
    Downloads: 14 This Week
    Last Update:
    See Project
  • Yeastar: Business Phone System and Unified Communications Icon
    Yeastar: Business Phone System and Unified Communications

    Go beyond just a PBX with all communications integrated as one.

    User-friendly, optimized, and scalable, the Yeastar P-Series Phone System redefines business connectivity by bringing together calling, meetings, omnichannel messaging, and integrations in one simple platform—removing the limitations of distance, platforms, and systems.
    Learn More
  • 10
    Moondream

    Moondream

    Tiny vision language model

    Moondream is a creative code project and visual experimentation repository that explores generative graphics, aesthetic patterns, and interactive art through code. The project typically showcases procedural visualizations, algorithmic designs, and artistic experiments that push the boundaries of what can be expressed with programming languages and rendering frameworks. While the exact nature can vary by commit or branch, Moondream’s work often blends geometry, color theory, and motion to...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    Claude Code Security Review

    Claude Code Security Review

    An AI-powered security review GitHub Action using Claude

    ...When a PR is opened, the action analyzes only the changed files (diff-aware scanning), generates findings (with explanations, severity, and remediation suggestions), filters false positives using custom prompt logic, and posts comments directly on the PR. It supports configuration inputs (which files/directories to skip, model timeout, whether to comment on the PR, etc). The tool is language-agnostic (it doesn’t need language-specific parsers), uses contextual understanding rather than simplistic rules, and aims to reduce noise with smarter filtering.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    OpenAI Realtime Embedded

    OpenAI Realtime Embedded

    Instructions on how to use the Realtime API on Microcontrollers

    openai-realtime-embedded is a repository that provides resources, SDKs, and example links for using OpenAI’s Realtime API on embedded hardware platforms (e.g. microcontrollers). The goal is to enable low-latency conversational agents (e.g. voice-based assistants) running directly on constrained devices, by leveraging WebRTC and streaming APIs to communicate with OpenAI systems. The repo includes pointers to an ESP32 implementation (maintained as esp32 branch) and documentation that Espressif offers an official example in openai_demo. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    GLM-Image

    GLM-Image

    GLM-Image: Auto-regressive for Dense-knowledge and High-fidelity Image

    GLM-Image is an open-source generative AI model designed to create high-fidelity images from text prompts using a hybrid architecture that combines autoregressive semantic understanding with diffusion-based detail refinement. It excels at generating images that include complex layouts and detailed text content, making it especially useful for posters, diagrams, info-graphics, social media graphics, and visual content that requires precise text placement and semantic alignment. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    HunyuanVideo-I2V

    HunyuanVideo-I2V

    A Customizable Image-to-Video Model based on HunyuanVideo

    ...The repository includes pretrained weights, inference and sampling scripts, training code for LoRA effects, and support for parallel inference via xDiT. Resolution, video length, stability mode, flow shift, seed, CPU offload etc. Parallel inference support using xDiT for multi-GPU speedups. LoRA training / fine-tuning support to add special effects or customize generation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Granite TSFM

    Granite TSFM

    Foundation Models for Time Series

    ...It documents the currently supported Python versions and points users to where the core TSFM models are hosted and how to wire up service components. Issues and examples in the tracker illustrate common tasks such as slicing inference windows or using pipeline helpers that return pandas DataFrames, grounding the library in day-to-day time-series operations. The ecosystem around TSFM also includes a community cookbook of “recipes” that showcase capabilities and patterns. Overall, the repo is designed as a hands-on companion for teams adopting time-series foundation models in production-leaning settings.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    SAM 3D Body

    SAM 3D Body

    Code for running inference with the SAM 3D Body Model 3DB

    SAM 3D Body is a promptable model for single-image full-body 3D human mesh recovery, designed to estimate detailed human pose and shape from just one RGB image. It reconstructs the full body, including feet and hands, using the Momentum Human Rig (MHR), a parametric mesh representation that decouples skeletal structure from surface shape for more accurate and interpretable results. The model is trained to be robust in diverse, in-the-wild conditions, so it handles varied clothing, viewpoints, and backgrounds while maintaining strong accuracy across multiple human-pose benchmarks. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    Anthropic SDK Python

    Anthropic SDK Python

    Provides convenient access to the Anthropic REST API from any Python 3

    ...It is designed to provide a user-friendly, type-safe, and asynchronous/synchronous capable interface for making chat/completion requests to models like Claude. The library includes definitions for all request and response parameters using Python typed objects, automatically handles serialization and deserialization, and wraps HTTP logic (timeouts, retries, error mapping) so that developers can call the API in a clean, high-level way. The SDK supports both synchronous and asynchronous usage (via async/await) depending on context. Importantly, it also supports streaming responses via Server-Sent Events (SSE) so that large outputs can be consumed incrementally rather than waiting for the full response. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    FlashMLA

    FlashMLA

    FlashMLA: Efficient Multi-head Latent Attention Kernels

    ...It provides optimized kernels for MLA decoding, including support for variable-length sequences, helping reduce latency and increase throughput in model inference systems using that attention style. The library supports both BF16 and FP16 data types, and includes a paged KV cache implementation with a block size of 64 to efficiently manage memory during decoding. On very compute-bound settings, it can reach up to ~660 TFLOPS on H800 SXM5 hardware, while in memory-bound configurations it can push memory throughput to ~3000 GB/s. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    MiniMax-M1

    MiniMax-M1

    Open-weight, large-scale hybrid-attention reasoning model

    MiniMax-M1 is presented as the world’s first open-weight, large-scale hybrid-attention reasoning model, designed to push the frontier of long-context, tool-using, and deeply “thinking” language models. It is built on the MiniMax-Text-01 foundation and keeps the same massive parameter budget, but reworks the attention and training setup for better reasoning and test-time compute scaling. Architecturally, it combines Mixture-of-Experts layers with lightning attention, enabling the model to support a native context length of 1 million tokens while using far fewer FLOPs than comparable reasoning models for very long generations. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    DFlash

    DFlash

    Block Diffusion for Ultra-Fast Speculative Decoding

    DFlash is an open-source framework for ultra-fast speculative decoding using a lightweight block diffusion model to draft text in parallel with a target large language model, dramatically improving inference speed without sacrificing generation quality. It acts as a “drafter” that proposes likely continuations which the main model then verifies, enabling significant throughput gains compared to traditional autoregressive decoding methods that generate token by token.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    FLUX.1

    FLUX.1

    Official inference repo for FLUX.1 models

    FLUX.1 repository contains inference code and tooling for the FLUX.1 text-to-image diffusion models, enabling developers and researchers to generate and edit images from natural-language prompts using open-weight versions of the model on their own hardware or within custom applications. The project is part of a larger family of FLUX models developed by Black Forest Labs, designed to produce high-quality, detailed visuals from text descriptions with competitive prompt adherence and artistic fidelity. This repo focuses on running the open-source model variants efficiently, providing scripts, model loading logic, and examples for local installations, and supports integration with Python toolchains like PyTorch and popular generative pipelines. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    DreamCraft3D

    DreamCraft3D

    Official implementation of DreamCraft3D

    ...It may integrate rendering or post-processing modules (e.g. mesh smoothing, texturing) to make the outputs more output-ready. Because 3D generation is hardware‐intensive, the repository likely also includes optimizations like quantization, pruning, or inference accelerations (e.g. using FlashMLA or DeepEP) to make the generation pipeline faster or more efficient. DreamCraft3D may also support style or attribute control (e.g. “make this object metallic,” “add textures”) via prompt conditioning or guides.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Tencent-Hunyuan-Large

    Tencent-Hunyuan-Large

    Open-source large language model family from Tencent Hunyuan

    Tencent-Hunyuan-Large is the flagship open-source large language model family from Tencent Hunyuan, offering both pre-trained and instruct (fine-tuned) variants. It is designed with long-context capabilities, quantization support, and high performance on benchmarks across general reasoning, mathematics, language understanding, and Chinese / multilingual tasks. It aims to provide competitive capability with efficient deployment and inference. FP8 quantization support to reduce memory usage...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    MiniMax-01

    MiniMax-01

    Large-language-model & vision-language-model based on Linear Attention

    MiniMax-01 is the official repository for two flagship models: MiniMax-Text-01, a long-context language model, and MiniMax-VL-01, a vision-language model built on top of it. MiniMax-Text-01 uses a hybrid attention architecture that blends Lightning Attention, standard softmax attention, and Mixture-of-Experts (MoE) routing to achieve both high throughput and long-context reasoning. It has 456 billion total parameters with 45.9 billion activated per token and is trained with advanced parallel...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next