94 projects for "raspberry-gpio-python" with 2 filters applied:

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 1
    HunyuanVideo-I2V

    HunyuanVideo-I2V

    A Customizable Image-to-Video Model based on HunyuanVideo

    HunyuanVideo-I2V is a customizable image-to-video generation framework from Tencent Hunyuan, built on their HunyuanVideo foundation. It extends video generation so that given a static reference image plus an optional prompt, it generates a video sequence that preserves the reference image’s identity (especially in the first frame) and allows stylized effects via LoRA adapters. The repository includes pretrained weights, inference and sampling scripts, training code for LoRA effects, and...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    OpenAI Harmony

    OpenAI Harmony

    Renderer for the harmony response format to be used with gpt-oss

    Harmony is a response format developed by OpenAI for use with the gpt-oss model series. It defines a structured way for language models to produce outputs, including regular text, reasoning traces, tool calls, and structured data. By mimicking the OpenAI Responses API, Harmony provides developers with a familiar interface while enabling more advanced capabilities such as multiple output channels, instruction hierarchies, and tool namespaces. The format is essential for ensuring gpt-oss...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    NVIDIA Isaac GR00T

    NVIDIA Isaac GR00T

    NVIDIA Isaac GR00T N1.5 is the world's first open foundation model

    NVIDIA Isaac‑GR00T N1.5 is an open-source foundation model engineered for generalized humanoid robot reasoning and manipulation skills. It accepts multimodal inputs—such as language and images—and uses a diffusion transformer architecture built upon vision-language encoders, enabling adaptive robot behaviors across diverse environments. It is designed to be customizable via post-training with real or synthetic data. The vision-language model remains frozen during both pretraining and...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    PokeeResearch-7B

    PokeeResearch-7B

    Pokee Deep Research Model Open Source Repo

    PokeeResearchOSS provides an open-source, agentic “deep research” model centered on a 7B backbone that can browse, read, and synthesize current information from the web. Instead of relying only on static training data, the agent performs searches, visits pages, and extracts evidence before forming answers to complex queries. It is built to operate end-to-end: planning a research strategy, gathering sources, reasoning over conflicting claims, and writing a grounded response. The repository...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    HunyuanDiT

    HunyuanDiT

    Diffusion Transformer with Fine-Grained Chinese Understanding

    HunyuanDiT is a high-capability text-to-image diffusion transformer with bilingual (Chinese/English) understanding and multi-turn dialogue capability. It trains a diffusion model in latent space using a transformer backbone and integrates a Multimodal Large Language Model (MLLM) to refine captions and support conversational image generation. It supports adapters like ControlNet, IP-Adapter, LoRA, and can run under constrained VRAM via distillation versions. LoRA, ControlNet (pose, depth,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Depth Pro

    Depth Pro

    Sharp Monocular Metric Depth in Less Than a Second

    Depth Pro is a foundation model for zero-shot metric monocular depth estimation, producing sharp, high-frequency depth maps with absolute scale from a single image. Unlike many prior approaches, it does not require camera intrinsics or extra metadata, yet still outputs metric depth suitable for downstream 3D tasks. Apple highlights both accuracy and speed: the model can synthesize a ~2.25-megapixel depth map in around 0.3 seconds on a standard GPU, enabling near real-time applications. The...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Map-Anything

    Map-Anything

    MapAnything: Universal Feed-Forward Metric 3D Reconstruction

    Map-Anything is a universal, feed-forward transformer for metric 3D reconstruction that predicts a scene’s geometry and camera parameters directly from visual inputs. Instead of stitching together many task-specific models, it uses a single architecture that supports a wide range of 3D tasks—multi-image structure-from-motion, multi-view stereo, monocular metric depth, registration, depth completion, and more. The model flexibly accepts different input combinations (images, intrinsics, poses,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Gemma in PyTorch

    Gemma in PyTorch

    The official PyTorch implementation of Google's Gemma models

    gemma_pytorch provides the official PyTorch reference for running and fine-tuning Google’s Gemma family of open models. It includes model definitions, configuration files, and loading utilities for multiple parameter scales, enabling quick evaluation and downstream adaptation. The repository demonstrates text generation pipelines, tokenizer setup, quantization paths, and adapters for low-rank or parameter-efficient fine-tuning. Example notebooks walk through instruction tuning and evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Financial reporting cloud-based software. Icon
    Financial reporting cloud-based software.

    For companies looking to automate their consolidation and financial statement function

    The software is cloud based and automates complexities around consolidating and reporting for groups with multiple year ends, currencies and ERP systems with a slice and dice approach to reporting. While retaining the structure, control and validation needed in a financial reporting tool, we’ve managed to keep things flexible.
    Learn More
  • 10
    MobileCLIP

    MobileCLIP

    Implementation of "MobileCLIP" CVPR 2024

    MobileCLIP is a family of efficient image-text embedding models designed for real-time, on-device retrieval and zero-shot classification. The repo provides training, inference, and evaluation code for MobileCLIP models trained on DataCompDR, and for newer MobileCLIP2 models trained on DFNDR. It includes an iOS demo app and Core ML artifacts to showcase practical, offline photo search and classification on iPhone-class hardware. Project notes highlight latency/accuracy trade-offs, with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Sapiens

    Sapiens

    High-resolution models for human tasks

    Sapiens is a research framework from Meta AI focused on embodied intelligence and human-like multimodal learning, aiming to train agents that can perceive, reason, and act in complex environments. It integrates sensory inputs such as vision, audio, and proprioception into a unified learning architecture that allows agents to understand and adapt to their surroundings dynamically. The project emphasizes long-horizon reasoning and cross-modal grounding—connecting language, perception, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    SlowFast

    SlowFast

    Video understanding codebase from FAIR for reproducing video models

    SlowFast is a video understanding framework that captures both spatial semantics and temporal dynamics efficiently by processing video frames at two different temporal resolutions. The slow pathway encodes semantic context by sampling frames sparsely, while the fast pathway captures motion and fine temporal cues by operating on densely sampled frames with fewer channels. Together, these two pathways complement each other, allowing the network to model both appearance and motion without...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DeepSeek VL

    DeepSeek VL

    Towards Real-World Vision-Language Understanding

    DeepSeek-VL is DeepSeek’s initial vision-language model that anchors their multimodal stack. It enables understanding and generation across visual and textual modalities—meaning it can process an image + a prompt, answer questions about images, caption, classify, or reason about visuals in context. The model is likely used internally as the visual encoder backbone for agent use cases, to ground perception in downstream tasks (e.g. answering questions about a screenshot). The repository...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    CLIP

    CLIP

    CLIP, Predict the most relevant text snippet given an image

    CLIP (Contrastive Language-Image Pretraining) is a neural model that links images and text in a shared embedding space, allowing zero-shot image classification, similarity search, and multimodal alignment. It was trained on large sets of (image, caption) pairs using a contrastive objective: images and their matching text are pulled together in embedding space, while mismatches are pushed apart. Once trained, you can give it any text labels and ask it to pick which label best matches a given...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Hunyuan3D-1

    Hunyuan3D-1

    A Unified Framework for Text-to-3D and Image-to-3D Generation

    Hunyuan3D-1 is an earlier version in the same 3D generation line (the unified framework for text-to-3D and image-to-3D tasks) by Tencent Hunyuan. It provides a framework combining shape generation and texture synthesis, enabling users to create 3D assets from images or text conditions. While less advanced than version 2.1, it laid the foundations for the later PBR, higher resolution, and open-source enhancements. (Note: less detailed public documentation was found for Hunyuan3D-1 compared to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    HunyuanCustom

    HunyuanCustom

    Multimodal-Driven Architecture for Customized Video Generation

    HunyuanCustom is a multimodal video customization framework by Tencent Hunyuan, aimed at generating customized videos featuring particular subjects (people, characters) under flexible conditions, while maintaining subject/identity consistency. It supports conditioning via image, audio, video, and text, and can perform subject replacement in videos, generate avatars speaking given audio, or combine multiple subject images. The architecture builds on HunyuanVideo, with added modules for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    HunyuanVideo-Foley

    HunyuanVideo-Foley

    Multimodal Diffusion with Representation Alignment

    HunyuanVideo-Foley is a multimodal diffusion model from Tencent Hunyuan for high-fidelity Foley (sound effects) audio generation synchronized to video scenes. It is designed to generate audio that matches both visual content and textual semantic cues, for use in video production, film, advertising, games, etc. The model architecture aligns audio, video, and text representations to produce realistic synchronized soundtracks. Produces high-quality 48 kHz audio output suitable for professional...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Style Aligned

    Style Aligned

    Official code for Style Aligned Image Generation via Shared Attention

    StyleAligned is a diffusion-model editing technique and codebase that preserves the visual “style” of an original image while applying new semantic edits driven by text. Instead of fully re-generating an image—and risking changes to lighting, texture, or rendering choices—the method aligns internal features across denoising steps so the target edit inherits the source style. This alignment acts like a constraint on the model’s evolution, steering composition, palette, and brushwork even as...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    4M

    4M

    4M: Massively Multimodal Masked Modeling

    4M is a training framework for “any-to-any” vision foundation models that uses tokenization and masking to scale across many modalities and tasks. The same model family can classify, segment, detect, caption, and even generate images, with a single interface for both discriminative and generative use. The repository releases code and models for multiple variants (e.g., 4M-7 and 4M-21), emphasizing transfer to unseen tasks and modalities. Training/inference configs and issues discuss things...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    FastVLM

    FastVLM

    This repository contains the official implementation of FastVLM

    FastVLM is an efficiency-focused vision-language modeling stack that introduces FastViTHD, a hybrid vision encoder engineered to emit fewer visual tokens and slash encoding time, especially for high-resolution images. Instead of elaborate pruning stages, the design trades off resolution and token count through input scaling, simplifying the pipeline while maintaining strong accuracy. Reported results highlight dramatic speedups in time-to-first-token and competitive quality versus...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    MetaCLIP

    MetaCLIP

    ICLR2024 Spotlight: curation/training code, metadata, distribution

    MetaCLIP is a research codebase that extends the CLIP framework into a meta-learning / continual learning regime, aiming to adapt CLIP-style models to new tasks or domains efficiently. The goal is to preserve CLIP’s strong zero-shot transfer capability while enabling fast adaptation to domain shifts or novel class sets with minimal data and without catastrophic forgetting. The repository provides training logic, adaptation strategies (e.g. prompt tuning, adapter modules), and evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Flow Matching

    Flow Matching

    A PyTorch library for implementing flow matching algorithms

    flow_matching is a PyTorch library implementing flow matching algorithms in both continuous and discrete settings, enabling generative modeling via matching vector fields rather than diffusion. The underlying idea is to parameterize a flow (a time-dependent vector field) that transports samples from a simple base distribution to a target distribution, and train via matching of flows without requiring score estimation or noisy corruption—this can lead to more efficient or stable generative...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DeiT (Data-efficient Image Transformers)
    DeiT (Data-efficient Image Transformers) shows that Vision Transformers can be trained competitively on ImageNet-1k without external data by using strong training recipes and knowledge distillation. Its key idea is a specialized distillation strategy—including a learnable “distillation token”—that lets a transformer learn effectively from a CNN or transformer teacher on modest-scale datasets. The project provides compact ViT variants (Tiny/Small/Base) that achieve excellent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DINOv2

    DINOv2

    PyTorch code and models for the DINOv2 self-supervised learning

    DINOv2 is a self-supervised vision learning framework that produces strong, general-purpose image representations without using human labels. It builds on the DINO idea of student–teacher distillation and adapts it to modern Vision Transformer backbones with a carefully tuned recipe for data augmentation, optimization, and multi-crop training. The core promise is that a single pretrained backbone can transfer well to many downstream tasks—from linear probing on classification to retrieval,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Mistral Finetune

    Mistral Finetune

    Memory-efficient and performant finetuning of Mistral's models

    mistral-finetune is an official lightweight codebase designed for memory-efficient and performant finetuning of Mistral’s open models (e.g. 7B, instruct variants). It builds on techniques like LoRA (Low-Rank Adaptation) to allow customizing models without full parameter updates, which reduces GPU memory footprint and training cost. The repo includes utilities for data preprocessing (e.g. reformat_data.py), validation scripts, and example YAML configs for training variants like 7B base or...
    Downloads: 0 This Week
    Last Update:
    See Project