Showing 14 open source projects for "visualization"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 1
    VGGSfM

    VGGSfM

    VGGSfM: Visual Geometry Grounded Deep Structure From Motion

    ...Version 2.0 adds support for dynamic scene handling, dense point cloud export, video-based reconstruction (1000+ frames), and integration with Gaussian Splatting pipelines. It leverages tools like PyCOLMAP, poselib, LightGlue, and PyTorch3D for feature matching, pose estimation, and visualization. With minimal configuration, users can process single scenes or full video sequences, apply motion masks to exclude moving objects, and train neural radiance or splatting models directly from reconstructed outputs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    DeepSeek-V3.2-Exp

    DeepSeek-V3.2-Exp

    An experimental version of DeepSeek model

    DeepSeek-V3.2-Exp is an experimental release of the DeepSeek model family, intended as a stepping stone toward the next generation architecture. The key innovation in this version is DeepSeek Sparse Attention (DSA), a sparse attention mechanism that aims to optimize training and inference efficiency in long-context settings without degrading output quality. According to the authors, they aligned the training setup of V3.2-Exp with V3.1-Terminus so that benchmark results remain largely...
    Downloads: 23 This Week
    Last Update:
    See Project
  • 3
    LTX-2

    LTX-2

    Python inference and LoRA trainer package for the LTX-2 audio–video

    ...Beyond basic rendering scaffolding, LTX-2 includes optimized math libraries, resource loaders, utilities for texture and buffer handling, and integration points for native event loops and input systems. The framework targets both interactive graphical applications and media-rich experiences, making it a solid foundation for games, creative tools, or visualization systems that demand both performance and flexibility. While being low-level, it also provides sensible defaults and helper abstractions that reduce boilerplate and help teams maintain clear, maintainable code.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 4
    SAM 3D Body

    SAM 3D Body

    Code for running inference with the SAM 3D Body Model 3DB

    SAM 3D Body is a promptable model for single-image full-body 3D human mesh recovery, designed to estimate detailed human pose and shape from just one RGB image. It reconstructs the full body, including feet and hands, using the Momentum Human Rig (MHR), a parametric mesh representation that decouples skeletal structure from surface shape for more accurate and interpretable results. The model is trained to be robust in diverse, in-the-wild conditions, so it handles varied clothing,...
    Downloads: 12 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 5
    HunyuanWorld 1.0

    HunyuanWorld 1.0

    Generating Immersive, Explorable, and Interactive 3D Worlds

    HunyuanWorld-1.0 is an open-source, simulation-capable 3D world generation model developed by Tencent Hunyuan that creates immersive, explorable, and interactive 3D environments from text or image inputs. It combines the strengths of video-based diversity and 3D-based geometric consistency through a novel framework using panoramic world proxies and semantically layered 3D mesh representations. This approach enables 360° immersive experiences, seamless mesh export for graphics pipelines, and...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 6
    SlowFast

    SlowFast

    Video understanding codebase from FAIR for reproducing video models

    SlowFast is a video understanding framework that captures both spatial semantics and temporal dynamics efficiently by processing video frames at two different temporal resolutions. The slow pathway encodes semantic context by sampling frames sparsely, while the fast pathway captures motion and fine temporal cues by operating on densely sampled frames with fewer channels. Together, these two pathways complement each other, allowing the network to model both appearance and motion without...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Profile Data

    Profile Data

    Analyze computation-communication overlap in V3/R1

    profile-data is a repository that publishes profiling traces and metrics from DeepSeek’s training and inference infrastructure (especially during DeepSeek-V3 / R1 experiments). The profiling data targets insights into computation-communication overlap, pipeline scheduling (e.g. DualPipe), and how MoE / EP / parallelism strategies interact in real systems. The repository contains JSON trace files like train.json, prefill.json, decode.json, and associated assets. Users can load them into tools...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Mesh R-CNN

    Mesh R-CNN

    code for Mesh R-CNN, ICCV 2019

    Mesh R-CNN is a 3D reconstruction and object understanding framework developed by Facebook Research that extends Mask R-CNN into the 3D domain. Built on top of Detectron2 and PyTorch3D, Mesh R-CNN enables end-to-end 3D mesh prediction directly from single RGB images. The model learns to detect, segment, and reconstruct detailed 3D mesh representations of objects in natural images, bridging the gap between 2D perception and 3D understanding. Unlike voxel-based or point-based approaches, Mesh...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    DiT (Diffusion Transformers)

    DiT (Diffusion Transformers)

    Official PyTorch Implementation of "Scalable Diffusion Models"

    DiT (Diffusion Transformer) is a powerful architecture that applies transformer-based modeling directly to diffusion generative processes for high-quality image synthesis. Unlike CNN-based diffusion models, DiT represents the diffusion process in the latent space and processes image tokens through transformer blocks with learned positional encodings, offering scalability and superior sample quality. The model architecture parallels large language models but for image tokens—each block...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 10
    Menagerie

    Menagerie

    A collection of high-quality models for the MuJoCo physics engine

    ...The repository aims to improve reproducibility and quality across robotics research by providing verified models that adhere to consistent design and physical standards. Each model directory contains its 3D assets, MJCF XML definitions, licensing information, and example scenes for visualization and testing. The collection spans a wide range of categories including robotic arms, humanoids, quadrupeds, mobile manipulators, drones, and biomechanical systems. Users can access models directly via the robot_descriptions Python package or by cloning the repository for use in interactive MuJoCo simulations.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 11
    Mask2Former

    Mask2Former

    Code release for "Masked-attention Mask Transformer

    ...The project provides extensive configurations and pretrained models across popular benchmarks like COCO, ADE20K, and Cityscapes. Built on top of Detectron2, it includes training scripts, inference tools, and visualization utilities that make experimentation straightforward.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    ...After pretraining, the encoder serves as a powerful backbone for downstream tasks like image classification, segmentation, and detection, achieving top performance with minimal fine-tuning. The repository provides pretrained models, fine-tuning scripts, evaluation protocols, and visualization tools for reconstruction quality and learned features.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Multi-Agent Emergence Environments

    Multi-Agent Emergence Environments

    Environment generation code for the paper "Emergent Tool Use"

    multi-agent-emergence-environments is an open source research environment framework developed by OpenAI for the study of emergent behaviors in multi-agent systems. It was designed for the experiments described in the paper and blog post “Emergent Tool Use from Multi-Agent Autocurricula”, which investigated how complex cooperative and competitive behaviors can evolve through self-play. The repository provides environment generation code that builds on the mujoco-worldgen package, enabling...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    DeepSDF

    DeepSDF

    Learning Continuous Signed Distance Functions for Shape Representation

    DeepSDF is a deep learning framework for continuous 3D shape representation using Signed Distance Functions (SDFs), as presented in the CVPR 2019 paper DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation by Park et al. The framework learns a continuous implicit function that maps 3D coordinates to their corresponding signed distances from object surfaces, allowing compact, high-fidelity shape modeling. Unlike traditional discrete voxel grids or meshes, DeepSDF...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next