Showing 2 open source projects for "code generator"

View related business solutions
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • The complete IT asset and license management platform Icon
    The complete IT asset and license management platform

    Gain full visibility and control over your IT assets, licenses, usage and spend in one place with Setyl.

    The platform seamlessly integrates with 100+ IT systems, including MDM, RMM, IDP, SSO, HR, finance, helpdesk tools, and more.
    Learn More
  • 1
    InfoGAN

    InfoGAN

    Code for reproducing key results in the paper

    ...InfoGAN is a variant of the GAN (Generative Adversarial Network) architecture that aims to learn disentangled and interpretable latent representations by maximizing the mutual information between a subset of the latent codes and the generated outputs. That extra incentive encourages the generator to structure its latent space in a way where certain latent variables control meaningful, distinct factors (e.g. rotation, width, stroke thickness) in the output images. The repository includes code for experiments (e.g. on MNIST), launcher scripts, and some tests. It depends on a development version of TensorFlow (the code expects features not in older stable releases), and also uses other libraries like prettytensor and progressbar.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    SG2Im

    SG2Im

    Code for "Image Generation from Scene Graphs", Johnson et al, CVPR 201

    ...This separation lets the model reason about geometry and composition before committing to texture and color, improving spatial fidelity. The repository includes training code, datasets, and evaluation scripts so researchers can reproduce baselines and extend components such as the graph encoder or image generator. In practice, sg2im demonstrates how structured semantics can guide generative models to produce controllable, compositional imagery.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next