Showing 5 open source projects for "background"

View related business solutions
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • Go from Data Warehouse to Data and AI platform with BigQuery Icon
    Go from Data Warehouse to Data and AI platform with BigQuery

    Build, train, and run ML models with simple SQL. Automate data prep, analysis, and predictions with built-in AI assistance from Gemini.

    BigQuery is more than a data warehouse—it's an autonomous data-to-AI platform. Use familiar SQL to train ML models, run time-series forecasts, and generate AI-powered insights with native Gemini integration. Built-in agents handle data engineering and data science workflows automatically. Get $300 in free credit, query 1 TB, and store 10 GB free monthly.
    Try BigQuery Free
  • 1
    ACE-Step 1.5

    ACE-Step 1.5

    The most powerful local music generation model

    ...Beyond straightforward text-to-music synthesis, ACE-Step 1.5 enables flexible creative workflows, including tasks like cover generation, editing existing tracks, transforming vocals to background accompaniment, and stylistic personalization using low-rank adaptation from just a few example songs.
    Downloads: 125 This Week
    Last Update:
    See Project
  • 2
    Step1X-Edit

    Step1X-Edit

    A SOTA open-source image editing model

    Step1X-Edit is a state-of-the-art open-source image editing model/framework that uses a multimodal large language model (LLM) together with a diffusion-based image decoder to let users edit images simply via natural-language instructions plus a reference image. You supply an existing image and a textual command — e.g. “add a ruby pendant on the girl’s neck” or “make the background a sunset over mountains” — and the model interprets the instruction, computes a latent embedding combining the image content and user intent, then decodes a new image implementing the edit. The model targets general-purpose editing: from object addition/removal, style changes, recoloring, retouching, background replacement, to complex transformations like changing lighting, mood, or art style. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Qwen-Image-Layered

    Qwen-Image-Layered

    Qwen-Image-Layered: Layered Decomposition for Inherent Editablity

    Qwen-Image-Layered is an extension of the Qwen series of multimodal models that introduces layered image understanding, enabling the model to reason about hierarchical visual structures — such as separating foreground, background, objects, and contextual layers within an image. This architecture allows richer semantic interpretation, enabling use cases such as scene decomposition, object-level editing, layered captioning, and more fine-grained multimodal reasoning than with flat image encodings alone. By combining text and structured image representations, it aims to facilitate tasks where both descriptive and structural understanding are important, such as detailed image QA, interactive image editing via prompt layers, and image-conditioned generation with structural control. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    ToMe (Token Merging)

    ToMe (Token Merging)

    A method to increase the speed and lower the memory footprint

    ...Developed by researchers at Facebook (Meta AI), ToMe introduces an efficient technique that merges similar tokens within transformer layers, reducing redundant computation while preserving model accuracy. This approach differs from token pruning, which removes background tokens entirely; instead, ToMe merges tokens based on feature similarity, allowing it to compress both foreground and background information efficiently. ToMe integrates seamlessly into existing transformer models such as DeiT, MAE, SWAG, and timm ViTs, offering 2–3x speedups during inference and substantial efficiency gains during training. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 5
    Qwen-Image-Edit

    Qwen-Image-Edit

    An advanced bilingual image editing with semantic control

    ...Benchmarks confirm its state-of-the-art performance in image editing, establishing it as a reliable foundation for both artistic and practical tasks. Its applications span IP creation, meme generation, background changes, clothing edits, and fine corrections in artworks or calligraphy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB