Showing 196 open source projects for "python-ldap"

View related business solutions
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    ChatGLM2-6B

    ChatGLM2-6B

    An Open Bilingual Chat LLM | Open Source Bilingual Conversation LLM

    ChatGLM2-6B is an advanced open-source bilingual dialogue model developed by THUDM. It is the second iteration of the ChatGLM series, designed to offer enhanced performance while maintaining the strengths of its predecessor, including smooth conversation flow and low deployment barriers. The model is fine-tuned for both Chinese and English languages, making it a versatile tool for various multilingual applications. ChatGLM2-6B aims to push the boundaries of natural language understanding and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    ControlNet

    ControlNet

    Let us control diffusion models

    ControlNet is a neural network architecture designed to add conditional control to text-to-image diffusion models. Rather than training from scratch, ControlNet “locks” the weights of a pre-trained diffusion model and introduces a parallel trainable branch that learns additional conditions—like edges, depth maps, segmentation, human pose, scribbles, or other guidance signals. This allows the system to control where and how the model should focus during generation, enabling users to steer...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    FastViT

    FastViT

    This repository contains the official implementation of research

    FastViT is an efficient vision backbone family that blends convolutional inductive biases with transformer capacity to deliver strong accuracy at mobile and real-time inference budgets. Its design pursues a favorable latency-accuracy Pareto curve, targeting edge devices and server scenarios where throughput and tail latency matter. The models use lightweight attention and carefully engineered blocks to minimize token mixing costs while preserving representation power. Training and inference...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    ChatGLM Efficient Tuning

    ChatGLM Efficient Tuning

    Fine-tuning ChatGLM-6B with PEFT

    ChatGLM-Efficient-Tuning is a hands-on toolkit for fine-tuning ChatGLM-family models with parameter-efficient methods on everyday hardware. It wraps techniques like LoRA and prompt-tuning into simple training scripts so you can adapt a large model to your domain without full retraining. The project exposes practical switches for quantization and mixed precision, allowing bigger models to fit into limited VRAM. It includes examples for instruction tuning and dialogue datasets, making it...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Consistency Models

    Consistency Models

    Official repo for consistency models

    consistency_models is the repository for Consistency Models, a new family of generative models introduced by OpenAI that aim to generate high-quality samples by mapping noise directly into data — circumventing the need for lengthy diffusion chains. It builds on and extends diffusion model frameworks (e.g. based on the guided-diffusion codebase), adding techniques like consistency distillation and consistency training to enable fast, often one-step, sample generation. The repo is implemented...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    GLM-130B

    GLM-130B

    GLM-130B: An Open Bilingual Pre-Trained Model (ICLR 2023)

    GLM-130B is an open bilingual (English and Chinese) dense language model with 130 billion parameters, released by the Tsinghua KEG Lab and collaborators as part of the General Language Model (GLM) series. It is designed for large-scale inference and supports both left-to-right generation and blank filling, making it versatile across NLP tasks. Trained on over 400 billion tokens (200B English, 200B Chinese), it achieves performance surpassing GPT-3 175B, OPT-175B, and BLOOM-176B on multiple...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Chinese-LLaMA-Alpaca-2 v2.0

    Chinese-LLaMA-Alpaca-2 v2.0

    Chinese LLaMA & Alpaca large language model + local CPU/GPU training

    This project has open-sourced the Chinese LLaMA model and the Alpaca large model with instruction fine-tuning to further promote the open research of large models in the Chinese NLP community. Based on the original LLaMA , these models expand the Chinese vocabulary and use Chinese data for secondary pre-training, which further improves the basic semantic understanding of Chinese. At the same time, the Chinese Alpaca model further uses Chinese instruction data for fine-tuning, which...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    PRM800K

    PRM800K

    800,000 step-level correctness labels on LLM solutions to MATH problem

    PRM800K is a process supervision dataset accompanying the paper Let’s Verify Step by Step, providing 800,000 step-level correctness labels on model-generated solutions to problems from the MATH dataset. The repository releases the raw labels and the labeler instructions used in two project phases, enabling researchers to study how human raters graded intermediate reasoning. Data are stored as newline-delimited JSONL files tracked with Git LFS, where each line is a full solution sample that...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Metaseq

    Metaseq

    Repo for external large-scale work

    Metaseq is a flexible, high-performance framework for training and serving large-scale sequence models, such as language models, translation systems, and instruction-tuned LLMs. Built on top of PyTorch, it provides distributed training, model sharding, mixed-precision computation, and memory-efficient checkpointing to support models with hundreds of billions of parameters. The framework was used internally at Meta to train models like OPT (Open Pre-trained Transformer) and serves as a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 10
    DiT (Diffusion Transformers)

    DiT (Diffusion Transformers)

    Official PyTorch Implementation of "Scalable Diffusion Models"

    DiT (Diffusion Transformer) is a powerful architecture that applies transformer-based modeling directly to diffusion generative processes for high-quality image synthesis. Unlike CNN-based diffusion models, DiT represents the diffusion process in the latent space and processes image tokens through transformer blocks with learned positional encodings, offering scalability and superior sample quality. The model architecture parallels large language models but for image tokens—each block...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    VALL-E

    VALL-E

    PyTorch implementation of VALL-E (Zero-Shot Text-To-Speech)

    We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called VALL-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems....
    Downloads: 8 This Week
    Last Update:
    See Project
  • 12
    Stable-Dreamfusion

    Stable-Dreamfusion

    Text-to-3D & Image-to-3D & Mesh Exportation with NeRF + Diffusion

    A pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model. This project is a work-in-progress and contains lots of differences from the paper. The current generation quality cannot match the results from the original paper, and many prompts still fail badly! Since the Imagen model is not publicly available, we use Stable Diffusion to replace it (implementation from diffusers). Different from Imagen, Stable-Diffusion is a latent diffusion...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    ToMe (Token Merging)

    ToMe (Token Merging)

    A method to increase the speed and lower the memory footprint

    ToMe (Token Merging) is a PyTorch-based optimization framework designed to significantly accelerate Vision Transformer (ViT) architectures without retraining. Developed by researchers at Facebook (Meta AI), ToMe introduces an efficient technique that merges similar tokens within transformer layers, reducing redundant computation while preserving model accuracy. This approach differs from token pruning, which removes background tokens entirely; instead, ToMe merges tokens based on feature...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    pyllama

    pyllama

    LLaMA: Open and Efficient Foundation Language Models

    📢 pyllama is a hacked version of LLaMA based on original Facebook's implementation but more convenient to run in a Single consumer grade GPU.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    GPT-NeoX

    GPT-NeoX

    Implementation of model parallel autoregressive transformers on GPUs

    This repository records EleutherAI's library for training large-scale language models on GPUs. Our current framework is based on NVIDIA's Megatron Language Model and has been augmented with techniques from DeepSpeed as well as some novel optimizations. We aim to make this repo a centralized and accessible place to gather techniques for training large-scale autoregressive language models, and accelerate research into large-scale training. For those looking for a TPU-centric codebase, we...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    ConvNeXt V2

    ConvNeXt V2

    Code release for ConvNeXt V2 model

    ConvNeXt V2 is an evolution of the ConvNeXt architecture that co-designs convolutional networks alongside self-supervised learning. The V2 version introduces a fully convolutional masked autoencoder (FCMAE) framework where parts of the image are masked and the network reconstructs the missing content, marrying convolutional inductive bias with powerful pretraining. A key innovation is a new Global Response Normalization (GRN) layer added to the ConvNeXt backbone, which enhances feature...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    minGPT

    minGPT

    A minimal PyTorch re-implementation of the OpenAI GPT

    minGPT is a minimalist, educational re-implementation of the GPT (Generative Pretrained Transformer) architecture built in PyTorch, designed by Andrej Karpathy to expose the core structure of a transformer-based language model in as few lines of code as possible. It strips away extraneous bells and whistles, aiming to show how a sequence of token indices is fed into a stack of transformer blocks and then decoded into the next token probabilities, with both training and inference supported....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Menagerie

    Menagerie

    A collection of high-quality models for the MuJoCo physics engine

    ...The collection spans a wide range of categories including robotic arms, humanoids, quadrupeds, mobile manipulators, drones, and biomechanical systems. Users can access models directly via the robot_descriptions Python package or by cloning the repository for use in interactive MuJoCo simulations.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    Apple Neural Engine (ANE) Transformers

    Apple Neural Engine (ANE) Transformers

    Reference implementation of the Transformer architecture optimized

    ANE Transformers is a reference PyTorch implementation of Transformer components optimized for Apple Neural Engine on devices with A14 or newer and on Macs with M1 or newer chips. It demonstrates how to structure attention and related layers to achieve substantial speedups and lower peak memory compared to baseline implementations when deployed to ANE. The repository targets practitioners who want to keep familiar PyTorch modeling while preparing models for Core ML/ANE execution paths....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Video Pre-Training

    Video Pre-Training

    Learning to Act by Watching Unlabeled Online Videos

    The Video PreTraining (VPT) repository provides code and model artifacts for a project where agents learn to act by watching human gameplay videos—specifically, gameplay of Minecraft—using behavioral cloning. The idea is to learn general priors of control from large-scale, unlabeled video data, and then optionally fine-tune those priors for more goal-directed behavior via environment interaction. The repository contains demonstration models of different widths, fine-tuned variants (e.g. for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    LaMDA-pytorch

    LaMDA-pytorch

    Open-source pre-training implementation of Google's LaMDA in PyTorch

    Open-source pre-training implementation of Google's LaMDA research paper in PyTorch. The totally not sentient AI. This repository will cover the 2B parameter implementation of the pre-training architecture as that is likely what most can afford to train. You can review Google's latest blog post from 2022 which details LaMDA here. You can also view their previous blog post from 2021 on the model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Mask2Former

    Mask2Former

    Code release for "Masked-attention Mask Transformer

    Mask2Former is a unified segmentation architecture that handles semantic, instance, and panoptic segmentation with one model and one training recipe. Its core idea is to cast segmentation as mask classification: a transformer decoder predicts a set of mask queries, each with an associated class score, eliminating the need for task-specific heads. A pixel decoder fuses multi-scale features and feeds masked attention in the transformer so each query focuses computation on its current spatial...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    GLIDE (Text2Im)

    GLIDE (Text2Im)

    GLIDE: a diffusion-based text-conditional image synthesis model

    glide-text2im is an open source implementation of OpenAI’s GLIDE model, which generates photorealistic images from natural language text prompts. It demonstrates how diffusion-based generative models can be conditioned on text to produce highly detailed and coherent visual outputs. The repository provides both model code and pretrained checkpoints, making it possible for researchers and developers to experiment with text-to-image synthesis. GLIDE includes advanced techniques such as...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    MaskFormer

    MaskFormer

    Per-Pixel Classification is Not All You Need for Semantic Segmentation

    MaskFormer is a unified framework for image segmentation developed by Facebook Research, designed to bridge the gap between semantic, instance, and panoptic segmentation within a single architecture. Unlike traditional segmentation pipelines that treat these tasks separately, MaskFormer reformulates segmentation as a mask classification problem, enabling a consistent and efficient approach across multiple segmentation domains. Built on top of Detectron2, it supports a wide range of datasets...
    Downloads: 1 This Week
    Last Update:
    See Project