Showing 173 open source projects for "compiler python linux"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 1
    LaMDA-pytorch

    LaMDA-pytorch

    Open-source pre-training implementation of Google's LaMDA in PyTorch

    Open-source pre-training implementation of Google's LaMDA research paper in PyTorch. The totally not sentient AI. This repository will cover the 2B parameter implementation of the pre-training architecture as that is likely what most can afford to train. You can review Google's latest blog post from 2022 which details LaMDA here. You can also view their previous blog post from 2021 on the model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Mask2Former

    Mask2Former

    Code release for "Masked-attention Mask Transformer

    Mask2Former is a unified segmentation architecture that handles semantic, instance, and panoptic segmentation with one model and one training recipe. Its core idea is to cast segmentation as mask classification: a transformer decoder predicts a set of mask queries, each with an associated class score, eliminating the need for task-specific heads. A pixel decoder fuses multi-scale features and feeds masked attention in the transformer so each query focuses computation on its current spatial...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    GLIDE (Text2Im)

    GLIDE (Text2Im)

    GLIDE: a diffusion-based text-conditional image synthesis model

    glide-text2im is an open source implementation of OpenAI’s GLIDE model, which generates photorealistic images from natural language text prompts. It demonstrates how diffusion-based generative models can be conditioned on text to produce highly detailed and coherent visual outputs. The repository provides both model code and pretrained checkpoints, making it possible for researchers and developers to experiment with text-to-image synthesis. GLIDE includes advanced techniques such as...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    MaskFormer

    MaskFormer

    Per-Pixel Classification is Not All You Need for Semantic Segmentation

    MaskFormer is a unified framework for image segmentation developed by Facebook Research, designed to bridge the gap between semantic, instance, and panoptic segmentation within a single architecture. Unlike traditional segmentation pipelines that treat these tasks separately, MaskFormer reformulates segmentation as a mask classification problem, enabling a consistent and efficient approach across multiple segmentation domains. Built on top of Detectron2, it supports a wide range of datasets...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    GPT Neo

    GPT Neo

    An implementation of model parallel GPT-2 and GPT-3-style models

    An implementation of model & data parallel GPT3-like models using the mesh-tensorflow library. If you're just here to play with our pre-trained models, we strongly recommend you try out the HuggingFace Transformer integration. Training and inference is officially supported on TPU and should work on GPU as well. This repository will be (mostly) archived as we move focus to our GPU-specific repo, GPT-NeoX. NB, while neo can technically run a training step at 200B+ parameters, it is very...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    TimeSformer

    TimeSformer

    The official pytorch implementation of our paper

    TimeSformer is a vision transformer architecture for video that extends the standard attention mechanism into spatiotemporal attention. The model alternates attention along spatial and temporal dimensions (or designs variants like divided attention) so that it can capture both appearance and motion cues in video. Because the attention is global across frames, TimeSformer can reason about dependencies across long time spans, not just local neighborhoods. The official implementation in PyTorch...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Denoiser

    Denoiser

    Real Time Speech Enhancement in the Waveform Domain (Interspeech 2020)

    Denoiser is a real-time speech enhancement model operating directly on raw waveforms, designed to clean noisy audio while running efficiently on CPU. It uses a causal encoder-decoder architecture with skip connections, optimized with losses defined both in the time domain and frequency domain to better suppress noise while preserving speech. Unlike models that operate on spectrograms alone, this design enables lower latency and coherent waveform output. The implementation includes data...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    FixRes

    FixRes

    Reproduces results of "Fixing the train-test resolution discrepancy"

    FixRes is a lightweight yet powerful training methodology for convolutional neural networks (CNNs) that addresses the common train-test resolution discrepancy problem in image classification. Developed by Facebook Research, FixRes improves model generalization by adjusting training and evaluation procedures to better align input resolutions used during different phases. The approach is simple but highly effective, requiring no architectural modifications and working across diverse CNN...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Automate your business processes with ThinkAutomation Icon
    Automate your business processes with ThinkAutomation

    Parse, process and react to millions of messages - automatically

    Develop the automations that work for you. With ThinkAutomation, you get an open-ended studio to build any and every automated workflow you could ever need. All without volume limitations, and all without paying per process, license or ‘robot’.
    Learn More
  • 10
    Image GPT

    Image GPT

    Large-scale autoregressive pixel model for image generation by OpenAI

    Image-GPT is the official research code and models from OpenAI’s paper Generative Pretraining from Pixels. The project adapts GPT-2 to the image domain, showing that the same transformer architecture can model sequences of pixels without altering its fundamental structure. It provides scripts to download pretrained checkpoints of different model sizes (small, medium, large) trained on large-scale datasets and includes utilities for handling color quantization with a 9-bit palette....
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    PyTorch GAN Zoo

    PyTorch GAN Zoo

    A mix of GAN implementations including progressive growing

    PyTorch GAN Zoo is a comprehensive open research toolbox designed for experimenting with and developing Generative Adversarial Networks (GANs) using PyTorch. The project provides modular implementations of popular GAN architectures, including Progressive Growing of GANs (PGAN), DCGAN, and an experimental StyleGAN version. It is built to support both researchers and developers who want to train, evaluate, and extend GANs efficiently across diverse datasets such as CelebA-HQ, FashionGen, DTD,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    DeepSDF

    DeepSDF

    Learning Continuous Signed Distance Functions for Shape Representation

    DeepSDF is a deep learning framework for continuous 3D shape representation using Signed Distance Functions (SDFs), as presented in the CVPR 2019 paper DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation by Park et al. The framework learns a continuous implicit function that maps 3D coordinates to their corresponding signed distances from object surfaces, allowing compact, high-fidelity shape modeling. Unlike traditional discrete voxel grids or meshes, DeepSDF...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    PyTorch-BigGraph

    PyTorch-BigGraph

    Generate embeddings from large-scale graph-structured data

    PyTorch-BigGraph (PBG) is a system for learning embeddings on massive graphs—think billions of nodes and edges—using partitioning and distributed training to keep memory and compute tractable. It shards entities into partitions and buckets edges so that each training pass only touches a small slice of parameters, which drastically reduces peak RAM and enables horizontal scaling across machines. PBG supports multi-relation graphs (knowledge graphs) with relation-specific scoring functions,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    MUSE

    MUSE

    A library for Multilingual Unsupervised or Supervised word Embeddings

    MUSE is a framework for learning multilingual word embeddings that live in a shared space, enabling bilingual lexicon induction, cross-lingual retrieval, and zero-shot transfer. It supports both supervised alignment with seed dictionaries and unsupervised alignment that starts without parallel data by using adversarial initialization followed by Procrustes refinement. The code can align pre-trained monolingual embeddings (such as fastText) across dozens of languages and provides standardized...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Improved GAN

    Improved GAN

    Code for the paper "Improved Techniques for Training GANs"

    Improved-GAN is the official code release from OpenAI accompanying the research paper Improved Techniques for Training GANs. It provides implementations of experiments conducted on datasets such as MNIST, SVHN, CIFAR-10, and ImageNet. The project focuses on demonstrating enhanced training methods for Generative Adversarial Networks, addressing stability and performance issues that were common in earlier GAN models. The repository includes training scripts, evaluation methods, and pretrained...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    InfoGAN

    InfoGAN

    Code for reproducing key results in the paper

    The InfoGAN repository contains the original implementation used to reproduce the results in the paper “InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets”. InfoGAN is a variant of the GAN (Generative Adversarial Network) architecture that aims to learn disentangled and interpretable latent representations by maximizing the mutual information between a subset of the latent codes and the generated outputs. That extra incentive encourages the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    SG2Im

    SG2Im

    Code for "Image Generation from Scene Graphs", Johnson et al, CVPR 201

    sg2im is a research codebase that learns to synthesize images from scene graphs—structured descriptions of objects and their relationships. Instead of conditioning on free-form text alone, it leverages graph structure to control layout and interactions, generating scenes that respect constraints like “person left of dog” or “cup on table.” The pipeline typically predicts object layouts (bounding boxes and masks) from the graph, then renders a realistic image conditioned on those layouts....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Dia-1.6B

    Dia-1.6B

    Dia-1.6B generates lifelike English dialogue and vocal expressions

    Dia-1.6B is a 1.6 billion parameter text-to-speech model by Nari Labs that generates high-fidelity dialogue directly from transcripts. Designed for realistic vocal performance, Dia supports expressive features like emotion, tone control, and non-verbal cues such as laughter, coughing, or sighs. The model accepts speaker conditioning through audio prompts, allowing limited voice cloning and speaker consistency across generations. It is optimized for English and built for real-time performance...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Mellum-4b-base

    Mellum-4b-base

    JetBrains’ 4B parameter code model for completions

    Mellum-4b-base is JetBrains’ first open-source large language model designed and optimized for code-related tasks. Built with 4 billion parameters and a LLaMA-style architecture, it was trained on over 4.2 trillion tokens across multiple programming languages, including datasets such as The Stack, StarCoder, and CommitPack. With a context window of 8,192 tokens, it excels at code completion, fill-in-the-middle tasks, and intelligent code suggestions for professional developer tools and IDEs....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    gpt-oss-20b

    gpt-oss-20b

    OpenAI’s compact 20B open model for fast, agentic, and local use

    GPT-OSS-20B is OpenAI’s smaller, open-weight language model optimized for low-latency, agentic tasks, and local deployment. With 21B total parameters and 3.6B active parameters (MoE), it fits within 16GB of memory thanks to native MXFP4 quantization. Designed for high-performance reasoning, it supports Harmony response format, function calling, web browsing, and code execution. Like its larger sibling (gpt-oss-120b), it offers adjustable reasoning depth and full chain-of-thought visibility...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Hunyuan-MT-7B

    Hunyuan-MT-7B

    Tencent’s 36-language state-of-the-art translation model

    Hunyuan-MT-7B is a large-scale multilingual translation model developed by Tencent, designed to deliver state-of-the-art translation quality across 36 languages, including several Chinese ethnic minority languages. It forms part of the Hunyuan Translation Model family, alongside Hunyuan-MT-Chimera, which ensembles outputs for even higher accuracy. Trained with a comprehensive framework spanning pretraining, cross-lingual pretraining, supervised fine-tuning, enhancement, and ensemble...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    mms-300m-1130-forced-aligner

    mms-300m-1130-forced-aligner

    CTC-based forced aligner for audio-text in 158 languages

    mms-300m-1130-forced-aligner is a multilingual forced alignment model based on Meta’s MMS-300M wav2vec2 checkpoint, adapted for Hugging Face’s Transformers library. It supports forced alignment between audio and corresponding text across 158 languages, offering broad multilingual coverage. The model enables accurate word- or phoneme-level timestamping using Connectionist Temporal Classification (CTC) emissions. Unlike other tools, it provides significant memory efficiency compared to the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    OpenVLA 7B

    OpenVLA 7B

    Vision-language-action model for robot control via images and text

    OpenVLA 7B is a multimodal vision-language-action model trained on 970,000 robot manipulation episodes from the Open X-Embodiment dataset. It takes camera images and natural language instructions as input and outputs normalized 7-DoF robot actions, enabling control of multiple robot types across various domains. Built on top of LLaMA-2 and DINOv2/SigLIP visual backbones, it allows both zero-shot inference for known robot setups and parameter-efficient fine-tuning for new domains. The model...
    Downloads: 0 This Week
    Last Update:
    See Project