Showing 118 open source projects for "chat source code"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Mask2Former

    Mask2Former

    Code release for "Masked-attention Mask Transformer

    Mask2Former is a unified segmentation architecture that handles semantic, instance, and panoptic segmentation with one model and one training recipe. Its core idea is to cast segmentation as mask classification: a transformer decoder predicts a set of mask queries, each with an associated class score, eliminating the need for task-specific heads. A pixel decoder fuses multi-scale features and feeds masked attention in the transformer so each query focuses computation on its current spatial...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    GLIDE (Text2Im)

    GLIDE (Text2Im)

    GLIDE: a diffusion-based text-conditional image synthesis model

    glide-text2im is an open source implementation of OpenAI’s GLIDE model, which generates photorealistic images from natural language text prompts. It demonstrates how diffusion-based generative models can be conditioned on text to produce highly detailed and coherent visual outputs. The repository provides both model code and pretrained checkpoints, making it possible for researchers and developers to experiment with text-to-image synthesis.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 3
    Image GPT

    Image GPT

    Large-scale autoregressive pixel model for image generation by OpenAI

    Image-GPT is the official research code and models from OpenAI’s paper Generative Pretraining from Pixels. The project adapts GPT-2 to the image domain, showing that the same transformer architecture can model sequences of pixels without altering its fundamental structure. It provides scripts to download pretrained checkpoints of different model sizes (small, medium, large) trained on large-scale datasets and includes utilities for handling color quantization with a 9-bit palette....
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Multi-Agent Emergence Environments

    Multi-Agent Emergence Environments

    Environment generation code for the paper "Emergent Tool Use"

    ...The repository provides environment generation code that builds on the mujoco-worldgen package, enabling dynamic creation of simulated physical environments. Developers can construct custom environments by combining modular components such as Boxes, Ramps, and RandomWalls using a flexible layering approach that reduces code duplication. The framework includes several predefined environments—such as Hide and Seek, Box Locking, Blueprint Construction, and Shelter Construction—that model distinct problem-solving and collaboration scenarios.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 5
    MUSE

    MUSE

    A library for Multilingual Unsupervised or Supervised word Embeddings

    MUSE is a framework for learning multilingual word embeddings that live in a shared space, enabling bilingual lexicon induction, cross-lingual retrieval, and zero-shot transfer. It supports both supervised alignment with seed dictionaries and unsupervised alignment that starts without parallel data by using adversarial initialization followed by Procrustes refinement. The code can align pre-trained monolingual embeddings (such as fastText) across dozens of languages and provides standardized...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    SG2Im

    SG2Im

    Code for "Image Generation from Scene Graphs", Johnson et al, CVPR 201

    sg2im is a research codebase that learns to synthesize images from scene graphs—structured descriptions of objects and their relationships. Instead of conditioning on free-form text alone, it leverages graph structure to control layout and interactions, generating scenes that respect constraints like “person left of dog” or “cup on table.” The pipeline typically predicts object layouts (bounding boxes and masks) from the graph, then renders a realistic image conditioned on those layouts....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Nemotron 3

    Nemotron 3

    Large language model developed and released by NVIDIA

    NVIDIA-Nemotron-3-Nano-30B-A3B-FP8 is a state-of-the-art large language model developed and released by NVIDIA as part of its Nemotron 3 family, optimized for high-efficiency inference and strong reasoning performance in open AI workloads. It is the post-trained and FP8-quantized variant of the Nemotron 3 Nano model, meaning its weights and activations are represented in 8-bit floating point (FP8) to dramatically reduce memory usage and computational cost while retaining high accuracy. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Qwen2-7B-Instruct

    Qwen2-7B-Instruct

    Instruction-tuned 7B language model for chat and complex tasks

    Qwen2-7B-Instruct is a 7.62-billion-parameter instruction-tuned language model from the Qwen2 series developed by Alibaba's Qwen team. Built on a transformer architecture with SwiGLU activation and group query attention, it is optimized for chat, reasoning, coding, multilingual tasks, and extended context understanding up to 131,072 tokens. The model was pretrained on a large-scale dataset and aligned via supervised fine-tuning and direct preference optimization. It shows strong performance across benchmarks such as MMLU, MT-Bench, GSM8K, and Humaneval, often surpassing similarly sized open-source models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    gpt-oss-120b

    gpt-oss-120b

    OpenAI’s open-weight 120B model optimized for reasoning and tooling

    GPT-OSS-120B is a powerful open-weight language model by OpenAI, optimized for high-level reasoning, tool use, and agentic tasks. With 117B total parameters and 5.1B active parameters, it’s designed to fit on a single H100 GPU using native MXFP4 quantization. The model supports fine-tuning, chain-of-thought reasoning, and structured outputs, making it ideal for complex workflows. It operates in OpenAI’s Harmony response format and can be deployed via Transformers, vLLM, Ollama, LM Studio,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 10
    VaultGemma

    VaultGemma

    VaultGemma: 1B DP-trained Gemma variant for private NLP tasks

    VaultGemma is a sub-1B parameter variant of Google’s Gemma family that is pre-trained from scratch with Differential Privacy (DP), providing mathematically backed guarantees that its outputs do not reveal information about any single training example. Using DP-SGD with a privacy budget across a large English-language corpus (web documents, code, mathematics), it prioritizes privacy over raw utility. The model follows a Gemma-2–style architecture, outputs text from up to 1,024 input tokens,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    translategemma-4b-it

    translategemma-4b-it

    Lightweight multimodal translation model for 55 languages

    ...With a compact ~5B parameter footprint and BF16 support, the model is designed to run efficiently on laptops, desktops, and private cloud infrastructure, making advanced translation accessible without heavy hardware requirements. TranslateGemma uses a structured chat template that enforces explicit source and target language codes, ensuring consistent, deterministic behavior and reducing ambiguity in multilingual pipelines. It integrates seamlessly with Hugging Face Transformers through pipelines or direct model initialization, supporting GPU acceleration and scalable deployment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Hermes 4

    Hermes 4

    Hermes 4 FP8: hybrid reasoning Llama-3.1-405B model by Nous Research

    Hermes 4 405B FP8 is a cutting-edge large language model developed by Nous Research, built on Llama-3.1-405B and optimized for frontier reasoning and alignment. It introduces a hybrid reasoning mode with explicit <think> segments, enabling the model to deliberate deeply when needed and switch to faster responses when desired. Post-training improvements include a vastly expanded corpus with ~60B tokens, boosting performance across math, code, STEM, logic, creativity, and structured outputs....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Mellum-4b-base

    Mellum-4b-base

    JetBrains’ 4B parameter code model for completions

    Mellum-4b-base is JetBrains’ first open-source large language model designed and optimized for code-related tasks. Built with 4 billion parameters and a LLaMA-style architecture, it was trained on over 4.2 trillion tokens across multiple programming languages, including datasets such as The Stack, StarCoder, and CommitPack. With a context window of 8,192 tokens, it excels at code completion, fill-in-the-middle tasks, and intelligent code suggestions for professional developer tools and IDEs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DeepSeek-V3.2

    DeepSeek-V3.2

    High-efficiency reasoning and agentic intelligence model

    DeepSeek-V3.2 is a cutting-edge large language model developed by DeepSeek-AI, focused on achieving high reasoning accuracy and computational efficiency for agentic tasks. It introduces DeepSeek Sparse Attention (DSA), a new attention mechanism that dramatically reduces computational overhead while maintaining strong long-context performance. Built with a scalable reinforcement learning framework, it reaches near-GPT-5 levels of reasoning and outperforms comparable models like DeepSeek-V3.1...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Hunyuan-A13B-Instruct

    Hunyuan-A13B-Instruct

    Efficient 13B MoE language model with long context and reasoning modes

    Hunyuan-A13B-Instruct is a powerful instruction-tuned large language model developed by Tencent using a fine-grained Mixture-of-Experts (MoE) architecture. While the total model includes 80 billion parameters, only 13 billion are active per forward pass, making it highly efficient while maintaining strong performance across benchmarks. It supports up to 256K context tokens, advanced reasoning (CoT) abilities, and agent-based workflows with tool parsing. The model offers both fast and slow...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Mistral Large 3 675B Instruct 2512

    Mistral Large 3 675B Instruct 2512

    Frontier-scale 675B multimodal instruct MoE model for enterprise AIMis

    Mistral Large 3 675B Instruct 2512 is a state-of-the-art multimodal granular Mixture-of-Experts model featuring 675B total parameters and 41B active parameters, trained from scratch on 3,000 H200 GPUs. As the instruct-tuned FP8 variant, it is optimized for reliable instruction following, agentic workflows, production-grade assistants, and long-context enterprise tasks. It incorporates a massive 673B-parameter language MoE backbone and a 2.5B-parameter vision encoder, enabling rich multimodal...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    OpenVLA 7B

    OpenVLA 7B

    Vision-language-action model for robot control via images and text

    OpenVLA 7B is a multimodal vision-language-action model trained on 970,000 robot manipulation episodes from the Open X-Embodiment dataset. It takes camera images and natural language instructions as input and outputs normalized 7-DoF robot actions, enabling control of multiple robot types across various domains. Built on top of LLaMA-2 and DINOv2/SigLIP visual backbones, it allows both zero-shot inference for known robot setups and parameter-efficient fine-tuning for new domains. The model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    wav2vec2-large-xlsr-53-portuguese

    wav2vec2-large-xlsr-53-portuguese

    Portuguese ASR model fine-tuned on XLSR-53 for 16kHz audio input

    wav2vec2-large-xlsr-53-portuguese is an automatic speech recognition (ASR) model fine-tuned on Portuguese using the Common Voice 6.1 dataset. It is based on Facebook’s wav2vec2-large-xlsr-53, a multilingual self-supervised learning model, and is optimized to transcribe Portuguese speech sampled at 16kHz. The model performs well without a language model, though adding one can improve word error rate (WER) and character error rate (CER). It achieves a WER of 11.3% (or 9.01% with LM) on Common...
    Downloads: 0 This Week
    Last Update:
    See Project