Showing 196 open source projects for "python-ldap"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    Improved Diffusion

    Improved Diffusion

    Release for Improved Denoising Diffusion Probabilistic Models

    improved-diffusion is an open source implementation of diffusion probabilistic models created by OpenAI. These models, also known as score-based generative models, are a class of generative models that have shown strong performance in producing high-quality synthetic data such as images. The repository provides code for training and sampling diffusion models with improved techniques that enhance stability, efficiency, and output fidelity. It includes scripts for setting up training runs,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    CodeGeeX2

    CodeGeeX2

    CodeGeeX2: A More Powerful Multilingual Code Generation Model

    CodeGeeX2 is the second-generation multilingual code generation model from ZhipuAI, built upon the ChatGLM2-6B architecture and trained on 600B code tokens. Compared to the first generation, it delivers a significant boost in programming ability across multiple languages, outperforming even larger models like StarCoder-15B in some benchmarks despite having only 6B parameters. The model excels at code generation, translation, summarization, debugging, and comment generation, and it supports...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    Qwen2.5-Omni

    Qwen2.5-Omni

    Capable of understanding text, audio, vision, video

    Qwen2.5-Omni is an end-to-end multimodal flagship model in the Qwen series by Alibaba Cloud, designed to process multiple modalities (text, images, audio, video) and generate responses both as text and natural speech in streaming real-time. It supports “Thinker-Talker” architecture, and introduces innovations for aligning modalities over time (for example synchronizing video/audio), robust speech generation, and low-VRAM/quantized versions to make usage more accessible. It holds...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    VMZ (Video Model Zoo)

    VMZ (Video Model Zoo)

    VMZ: Model Zoo for Video Modeling

    The codebase was designed to help researchers and practitioners quickly reproduce FAIR’s results and leverage robust pre-trained backbones for downstream tasks. It also integrates Gradient Blending, an audio-visual modeling method that fuses modalities effectively (available in the Caffe2 implementation). Although VMZ is now archived and no longer actively maintained, it remains a valuable reference for understanding early large-scale video model training, transfer learning, and multimodal...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 5
    CLIP

    CLIP

    CLIP, Predict the most relevant text snippet given an image

    CLIP (Contrastive Language-Image Pretraining) is a neural model that links images and text in a shared embedding space, allowing zero-shot image classification, similarity search, and multimodal alignment. It was trained on large sets of (image, caption) pairs using a contrastive objective: images and their matching text are pulled together in embedding space, while mismatches are pushed apart. Once trained, you can give it any text labels and ask it to pick which label best matches a given...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    rwkv.cpp

    rwkv.cpp

    INT4/INT5/INT8 and FP16 inference on CPU for RWKV language model

    Besides the usual FP32, it supports FP16, quantized INT4, INT5 and INT8 inference. This project is focused on CPU, but cuBLAS is also supported. RWKV is a novel large language model architecture, with the largest model in the family having 14B parameters. In contrast to Transformer with O(n^2) attention, RWKV requires only state from the previous step to calculate logits. This makes RWKV very CPU-friendly on large context lengths.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    DeepSeek VL2

    DeepSeek VL2

    Mixture-of-Experts Vision-Language Models for Advanced Multimodal

    DeepSeek-VL2 is DeepSeek’s vision + language multimodal model—essentially the next-gen successor to their first vision-language models. It combines image and text inputs into a unified embedding / reasoning space so that you can query with text and image jointly (e.g. “What’s going on in this scene?” or “Generate a caption appropriate to context”). The model supports both image understanding (vision tasks) and multimodal reasoning, and is likely used as a component in agent systems to...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    OpenAI Harmony

    OpenAI Harmony

    Renderer for the harmony response format to be used with gpt-oss

    Harmony is a response format developed by OpenAI for use with the gpt-oss model series. It defines a structured way for language models to produce outputs, including regular text, reasoning traces, tool calls, and structured data. By mimicking the OpenAI Responses API, Harmony provides developers with a familiar interface while enabling more advanced capabilities such as multiple output channels, instruction hierarchies, and tool namespaces. The format is essential for ensuring gpt-oss...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    BitNet

    BitNet

    Inference framework for 1-bit LLMs

    BitNet (bitnet.cpp) is a high-performance inference framework designed to optimize the execution of 1-bit large language models, making them more efficient for edge devices and local deployment. The framework offers significant speedups and energy reductions, achieving up to 6.17x faster performance on x86 CPUs and 70% energy savings, allowing the running of models such as the BitNet b1.58 100B with impressive efficiency. With support for lossless inference and enhanced processing power,...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    AlphaFold 3

    AlphaFold 3

    AlphaFold 3 inference pipeline

    AlphaFold 3, developed by Google DeepMind, is an advanced deep learning system for predicting biomolecular structures and interactions with exceptional accuracy. This repository provides the complete inference pipeline for running AlphaFold 3, though access to the model parameters is restricted and must be obtained directly from Google under specific terms of use. The system is designed for scientific research applications in structural biology, biochemistry, and bioinformatics, enabling...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    CogView4

    CogView4

    CogView4, CogView3-Plus and CogView3(ECCV 2024)

    CogView4 is the latest generation in the CogView series of vision-language foundation models, developed as a bilingual (Chinese and English) open-source system for high-quality image understanding and generation. Built on top of the GLM framework, it supports multimodal tasks including text-to-image synthesis, image captioning, and visual reasoning. Compared to previous CogView versions, CogView4 introduces architectural upgrades, improved training pipelines, and larger-scale datasets,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    DeepSeek MoE

    DeepSeek MoE

    Towards Ultimate Expert Specialization in Mixture-of-Experts Language

    DeepSeek-MoE (“DeepSeek MoE”) is the DeepSeek open implementation of a Mixture-of-Experts (MoE) model architecture meant to increase parameter efficiency by activating only a subset of “expert” submodules per input. The repository introduces fine-grained expert segmentation and shared expert isolation to improve specialization while controlling compute cost. For example, their MoE variant with 16.4B parameters claims comparable or better performance to standard dense models like DeepSeek 7B...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Ring

    Ring

    Ring is a reasoning MoE LLM provided and open-sourced by InclusionAI

    Ring is a reasoning Mixture-of-Experts (MoE) large language model (LLM) developed by inclusionAI. It is built from or derived from Ling. Its design emphasizes reasoning, efficiency, and modular expert activation. In its “flash” variant (Ring-flash-2.0), it optimizes inference by activating only a subset of experts. It applies reinforcement learning/reasoning optimization techniques. Its architectures and training approaches are tuned to enable efficient and capable reasoning performance....
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    Tencent-Hunyuan-Large

    Tencent-Hunyuan-Large

    Open-source large language model family from Tencent Hunyuan

    Tencent-Hunyuan-Large is the flagship open-source large language model family from Tencent Hunyuan, offering both pre-trained and instruct (fine-tuned) variants. It is designed with long-context capabilities, quantization support, and high performance on benchmarks across general reasoning, mathematics, language understanding, and Chinese / multilingual tasks. It aims to provide competitive capability with efficient deployment and inference. FP8 quantization support to reduce memory usage...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    Clay Foundation Model

    Clay Foundation Model

    The Clay Foundation Model - An open source AI model and interface

    The Clay Foundation Model is an open-source AI model and interface designed to provide comprehensive data and insights about Earth. It aims to serve as a foundational tool for environmental monitoring, research, and decision-making by integrating various data sources and offering an accessible platform for analysis.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    FramePack

    FramePack

    Lets make video diffusion practical

    FramePack explores compact representations for sequences of image frames, targeting tasks where many near-duplicate frames carry redundant information. The idea is to “pack” frames by detecting shared structure and storing differences efficiently, which can accelerate training or inference on video-like data. By reducing I/O and memory bandwidth, datasets become lighter to load while models still see the essential temporal variation. The repository demonstrates both packing and unpacking...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Depth Pro

    Depth Pro

    Sharp Monocular Metric Depth in Less Than a Second

    Depth Pro is a foundation model for zero-shot metric monocular depth estimation, producing sharp, high-frequency depth maps with absolute scale from a single image. Unlike many prior approaches, it does not require camera intrinsics or extra metadata, yet still outputs metric depth suitable for downstream 3D tasks. Apple highlights both accuracy and speed: the model can synthesize a ~2.25-megapixel depth map in around 0.3 seconds on a standard GPU, enabling near real-time applications. The...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    VGGSfM

    VGGSfM

    VGGSfM: Visual Geometry Grounded Deep Structure From Motion

    VGGSfM is an advanced structure-from-motion (SfM) framework jointly developed by Meta AI Research (GenAI) and the University of Oxford’s Visual Geometry Group (VGG). It reconstructs 3D geometry, dense depth, and camera poses directly from unordered or sequential images and videos. The system combines learned feature matching and geometric optimization to generate high-quality camera calibrations, sparse/dense point clouds, and depth maps in standard COLMAP format. Version 2.0 adds support...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    Map-Anything

    Map-Anything

    MapAnything: Universal Feed-Forward Metric 3D Reconstruction

    Map-Anything is a universal, feed-forward transformer for metric 3D reconstruction that predicts a scene’s geometry and camera parameters directly from visual inputs. Instead of stitching together many task-specific models, it uses a single architecture that supports a wide range of 3D tasks—multi-image structure-from-motion, multi-view stereo, monocular metric depth, registration, depth completion, and more. The model flexibly accepts different input combinations (images, intrinsics, poses,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    GLM-V

    GLM-V

    GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning

    GLM-V is an open-source vision-language model (VLM) series from ZhipuAI that extends the GLM foundation models into multimodal reasoning and perception. The repository provides both GLM-4.5V and GLM-4.1V models, designed to advance beyond basic perception toward higher-level reasoning, long-context understanding, and agent-based applications. GLM-4.5V builds on the flagship GLM-4.5-Air foundation (106B parameters, 12B active), achieving state-of-the-art results on 42 benchmarks across image,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Transformer Debugger

    Transformer Debugger

    Tool for exploring and debugging transformer model behaviors

    Transformer Debugger (TDB) is a research tool developed by OpenAI’s Superalignment team to investigate and interpret the behaviors of small language models. It combines automated interpretability methods with sparse autoencoders, enabling researchers to analyze how specific neurons, attention heads, and latent features contribute to a model’s outputs. TDB allows users to intervene directly in the forward pass of a model and observe how such interventions change predictions, making it...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Qwen3 Embedding

    Qwen3 Embedding

    Designed for text embedding and ranking tasks

    Qwen3-Embedding is a model series from the Qwen family designed specifically for text embedding and ranking tasks. It builds upon the Qwen3 base/dense models and offers several sizes (0.6B, 4B, 8B parameters), for both embedding and reranking, with high multilingual capability, long‐context understanding, and reasoning. It achieves state-of-the-art performance on benchmarks like MTEB (Multilingual Text Embedding Benchmark) and supports instruction-aware embedding (i.e. embedding task...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    Qwen2.5-Math

    Qwen2.5-Math

    A series of math-specific large language models of our Qwen2 series

    Qwen2.5-Math is a series of mathematics-specialized large language models in the Qwen2 family, released by Alibaba’s QwenLM. It includes base models (1.5B / 7B / 72B parameters), instruction-tuned versions, and a reward model (RM) to improve alignment. Unlike its predecessor Qwen2-Math, Qwen2.5-Math supports both Chain-of-Thought (CoT) reasoning and Tool-Integrated Reasoning (TIR) for solving math problems, and works in both Chinese and English. It is optimized for solving mathematical...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    CogVLM

    CogVLM

    A state-of-the-art open visual language model

    CogVLM is an open-source visual–language model suite—and its GUI-oriented sibling CogAgent—aimed at image understanding, grounding, and multi-turn dialogue, with optional agent actions on real UI screenshots. The flagship CogVLM-17B combines ~10B visual parameters with ~7B language parameters and supports 490×490 inputs; CogAgent-18B extends this to 1120×1120 and adds plan/next-action outputs plus grounded operation coordinates for GUI tasks. The repo provides multiple ways to run models...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Qwen2-Audio

    Qwen2-Audio

    Repo of Qwen2-Audio chat & pretrained large audio language model

    Qwen2-Audio is a large audio-language model by Alibaba Cloud, part of the Qwen series. It is trained to accept various audio signal inputs (including speech, sounds, etc.) and perform both voice chat and audio analysis, producing textual responses. It supports two major modes: Voice Chat (interactive voice only input) and Audio Analysis (audio + text instructions), with both base and instruction-tuned models. It is evaluated on many benchmarks (speech recognition, translation, sound...
    Downloads: 2 This Week
    Last Update:
    See Project