ImageReward
[NeurIPS 2023] ImageReward: Learning and Evaluating Human Preferences
ImageReward is the first general-purpose human preference reward model (RM) designed for evaluating text-to-image generation, introduced alongside the NeurIPS 2023 paper ImageReward: Learning and Evaluating Human Preferences for Text-to-Image Generation. Trained on 137k expert-annotated image pairs, ImageReward significantly outperforms existing scoring methods like CLIP, Aesthetic, and BLIP in capturing human visual preferences. It is provided as a Python package (image-reward) that enables quick scoring of generated images against textual prompts, with APIs for ranking, scoring, and filtering outputs. Beyond evaluation, ImageReward supports Reward Feedback Learning (ReFL), a method for directly fine-tuning diffusion models such as Stable Diffusion using human-preference feedback, leading to demonstrable improvements in image quality.