GANformer
Generative Adversarial Transformers
...The model iteratively propagates information from a set of latent variables to the evolving visual features and vice versa, to support the refinement of each in light of the other and encourage the emergence of compositional representations of objects and scenes. In contrast to the classic transformer architecture, it utilizes multiplicative integration that allows flexible region-based modulation and can thus be seen as a generalization of the successful StyleGAN network. Using the pre-trained models (generated after training for 5-7x less steps than StyleGAN2 models! Training our models for longer will improve the image quality further).