AI Image Generators for Linux

View 13 business solutions

Browse free open source AI Image Generators and projects for Linux below. Use the toggles on the left to filter open source AI Image Generators by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • 1
    ComfyUI

    ComfyUI

    The most powerful and modular diffusion model GUI, api and backend

    The most powerful and modular diffusion model is GUI and backend. This UI will let you design and execute advanced stable diffusion pipelines using a graph/nodes/flowchart-based interface. We are a team dedicated to iterating and improving ComfyUI, supporting the ComfyUI ecosystem with tools like node manager, node registry, cli, automated testing, and public documentation. Open source AI models will win in the long run against closed models and we are only at the beginning. Our core mission is to advance and democratize AI tooling. We believe that the future of AI tooling is open-source and community-driven.
    Downloads: 453 This Week
    Last Update:
    See Project
  • 2
    Fooocus

    Fooocus

    Focus on prompting and generating

    Fooocus is an open-source image generation software that simplifies the process of creating images from text prompts. Built on Gradio and leveraging Stable Diffusion XL, Fooocus eliminates the need for manual parameter tweaking, allowing users to focus solely on crafting prompts. It offers a user-friendly interface with minimal setup, making advanced image synthesis accessible to a broader audience.
    Downloads: 229 This Week
    Last Update:
    See Project
  • 3
    Z-Image

    Z-Image

    Image generation model with single-stream diffusion transformer

    Z-Image is an efficient, open-source image generation foundation model built to make high-quality image synthesis more accessible. With just 6 billion parameters — far fewer than many large-scale models — it uses a novel “single-stream diffusion Transformer” architecture to deliver photorealistic image generation, demonstrating that excellence does not always require extremely large model sizes. The project includes several variants: Z-Image-Turbo, a distilled version optimized for speed and low resource consumption; Z-Image-Base, the full-capacity foundation model; and Z-Image-Edit, fine-tuned for image editing tasks. Despite its compact size, Z-Image produces outputs that closely rival those from much larger models — including strong rendering of bilingual (English and Chinese) text inside images, accurate prompt adherence, and good layout and composition.
    Downloads: 109 This Week
    Last Update:
    See Project
  • 4
    AUTOMATIC1111 Stable Diffusion web UI
    AUTOMATIC1111's stable-diffusion-webui is a powerful, user-friendly web interface built on the Gradio library that allows users to easily interact with Stable Diffusion models for AI-powered image generation. Supporting both text-to-image (txt2img) and image-to-image (img2img) generation, this open-source UI offers a rich feature set including inpainting, outpainting, attention control, and multiple advanced upscaling options. With a flexible installation process across Windows, Linux, and Apple Silicon, plus support for GPUs and CPUs, it caters to a wide range of users—from hobbyists to professionals. The interface also supports prompt editing, batch processing, custom scripts, and many community extensions, making it a highly customizable and continually evolving platform for creative AI art generation.
    Downloads: 77 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    FLUX.2

    FLUX.2

    Official inference repo for FLUX.2 models

    FLUX.2 is a state-of-the-art open-weight image generation and editing model released by Black Forest Labs aimed at bridging the gap between research-grade capabilities and production-ready workflows. The model offers both text-to-image generation and powerful image editing, including editing of multiple reference images, with fidelity, consistency, and realism that push the limits of what open-source generative models have achieved. It supports high-resolution output (up to ~4 megapixels), which allows for photography-quality images, detailed product shots, infographics or UI mockups rather than just low-resolution drafts. FLUX.2 is built with a modern architecture (a flow-matching transformer + a revamped VAE + a strong vision-language encoder), enabling strong prompt adherence, correct rendering of text/typography in images, reliable lighting, layout, and physical realism, and consistent style/character/product identity across multiple generations or edits.
    Downloads: 60 This Week
    Last Update:
    See Project
  • 6
    InvokeAI

    InvokeAI

    InvokeAI is a leading creative engine for Stable Diffusion models

    InvokeAI is an implementation of Stable Diffusion, the open source text-to-image and image-to-image generator. It provides a streamlined process with various new features and options to aid the image generation process. It runs on Windows, Mac and Linux machines, and runs on GPU cards with as little as 4 GB or RAM. InvokeAI is a leading creative engine built to empower professionals and enthusiasts alike. Generate and create stunning visual media using the latest AI-driven technologies. InvokeAI offers an industry leading Web Interface, interactive Command Line Interface, and also serves as the foundation for multiple commercial products. This fork is supported across Linux, Windows and Macintosh. Linux users can use either an Nvidia-based card (with CUDA support) or an AMD card (using the ROCm driver). We do not recommend the GTX 1650 or 1660 series video cards. They are unable to run in half-precision mode and do not have sufficient VRAM to render 512x512 images.
    Downloads: 32 This Week
    Last Update:
    See Project
  • 7
    Stable Diffusion

    Stable Diffusion

    High-Resolution Image Synthesis with Latent Diffusion Models

    Stable Diffusion Version 2. The Stable Diffusion project, developed by Stability AI, is a cutting-edge image synthesis model that utilizes latent diffusion techniques for high-resolution image generation. It offers an advanced method of generating images based on text input, making it highly flexible for various creative applications. The repository contains pretrained models, various checkpoints, and tools to facilitate image generation tasks, such as fine-tuning and modifying the models. Stability AI's approach to image synthesis has contributed to creating detailed, scalable images while maintaining efficiency.
    Downloads: 152 This Week
    Last Update:
    See Project
  • 8
    Qwen-Image

    Qwen-Image

    Qwen-Image is a powerful image generation foundation model

    Qwen-Image is a powerful 20-billion parameter foundation model designed for advanced image generation and precise editing, with a particular strength in complex text rendering across diverse languages, especially Chinese. Built on the MMDiT architecture, it achieves remarkable fidelity in integrating text seamlessly into images while preserving typographic details and layout coherence. The model excels not only in text rendering but also in a wide range of artistic styles, including photorealistic, impressionist, anime, and minimalist aesthetics. Qwen-Image supports sophisticated editing tasks such as style transfer, object insertion and removal, detail enhancement, and even human pose manipulation, making it suitable for both professional and casual users. It also includes advanced image understanding capabilities like object detection, semantic segmentation, depth and edge estimation, and novel view synthesis.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 9
    Stable Diffusion WebUI

    Stable Diffusion WebUI

    Web interface for generating images using Stable Diffusion models

    This project provides a powerful web-based interface for running Stable Diffusion, a text-to-image generation model. Developed by AUTOMATIC1111, it supports numerous features like model customization, prompt history, image upscaling, inpainting, and batch processing. The WebUI is beginner-friendly yet powerful enough for advanced users, becoming one of the most popular community-run UIs for AI image generation.
    Downloads: 15 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    KoboldCpp

    KoboldCpp

    Run GGUF models easily with a UI or API. One File. Zero Install.

    KoboldCpp is an easy-to-use AI text-generation software for GGML and GGUF models, inspired by the original KoboldAI. It's a single self-contained distributable that builds off llama.cpp and adds many additional powerful features.
    Downloads: 255 This Week
    Last Update:
    See Project
  • 11
    Diffusers

    Diffusers

    State-of-the-art diffusion models for image and audio generation

    Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you're looking for a simple inference solution or training your own diffusion models, Diffusers is a modular toolbox that supports both. Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions. State-of-the-art diffusion pipelines that can be run in inference with just a few lines of code. Interchangeable noise schedulers for different diffusion speeds and output quality. Pretrained models that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems. We recommend installing Diffusers in a virtual environment from PyPi or Conda. For more details about installing PyTorch and Flax, please refer to their official documentation.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    Dream Textures

    Dream Textures

    Stable Diffusion built-in to Blender

    Create textures, concept art, background assets, and more with a simple text prompt. Use the 'Seamless' option to create textures that tile perfectly with no visible seam. Texture entire scenes with 'Project Dream Texture' and depth to image. Re-style animations with the Cycles render pass. Run the models on your machine to iterate without slowdowns from a service. Create textures, concept art, and more with text prompts. Learn how to use the various configuration options to get exactly what you're looking for. Texture entire models and scenes with depth to image. Inpaint to fix up images and convert existing textures into seamless ones automatically. Outpaint to increase the size of an image by extending it in any direction. Perform style transfer and create novel animations with Stable Diffusion as a post processing step. Dream Textures has been tested with CUDA and Apple Silicon GPUs. Over 4GB of VRAM is recommended.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    DALL·E Mini

    DALL·E Mini

    Generate images from a text prompt

    DALL·E Mini, generate images from a text prompt. Craiyon/DALL·E mini is an attempt at reproducing those results with an open-source model. The model is trained by looking at millions of images from the internet with their associated captions. Over time, it learns how to draw an image from a text prompt. Some concepts are learned from memory as they may have seen similar images. However, it can also learn how to create unique images that don't exist, such as "the Eiffel tower is landing on the moon," by combining multiple concepts together. Optimizer updated to Distributed Shampoo, which proved to be more efficient following comparison of different optimizers. New architecture based on NormFormer and GLU variants following comparison of transformer variants, including DeepNet, Swin v2, NormFormer, Sandwich-LN, RMSNorm with GeLU/Swish/SmeLU.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    Intelligent Java

    Intelligent Java

    Integrate with the latest language models, image generation and speech

    Intelligent java (IntelliJava) is the ultimate tool to integrate with the latest language models and deep learning frameworks using java. The library provides an intuitive functions for sending input to models like ChatGPT and DALL·E, and receiving generated text, speech or images. With just a few lines of code, you can easily access the power of cutting-edge AI models to enhance your projects. Access ChatGPT, GPT3 to generate text and DALL·E to generate images. OpenAI is preferred for quality results without tuning. Generate text; Cohere allows you to generate a language model to suit your specific needs. Generate audio from text; Access DeepMind’s speech models. The only dependencies is GSON. Required to add manually when using IntelliJava jar. However, if you imported this repo through Maven, it will handle the dependencies.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    Stable Diffusion v 2.1 web UI

    Stable Diffusion v 2.1 web UI

    Lightweight Stable Diffusion v 2.1 web UI: txt2img, img2img, depth2img

    Lightweight Stable Diffusion v 2.1 web UI: txt2img, img2img, depth2img, in paint and upscale4x. Gradio app for Stable Diffusion 2 by Stability AI. It uses Hugging Face Diffusers implementation. Currently supported pipelines are text-to-image, image-to-image, inpainting, upscaling and depth-to-image.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16

    stable-diffusion-webui-forge

    A Fork from Github repository of Illyasviel's Forge

    This is for use by the StableProjectorz https://stableprojectorz.com Kept here, in case the file changes URL in his repo. The URL must remain the same, so that StableProjectorz installer can always download it.
    Downloads: 94 This Week
    Last Update:
    See Project
  • 17
    Stable-Dreamfusion

    Stable-Dreamfusion

    Text-to-3D & Image-to-3D & Mesh Exportation with NeRF + Diffusion

    A pytorch implementation of the text-to-3D model Dreamfusion, powered by the Stable Diffusion text-to-2D model. This project is a work-in-progress and contains lots of differences from the paper. The current generation quality cannot match the results from the original paper, and many prompts still fail badly! Since the Imagen model is not publicly available, we use Stable Diffusion to replace it (implementation from diffusers). Different from Imagen, Stable-Diffusion is a latent diffusion model, which diffuses in a latent space instead of the original image space. Therefore, we need the loss to propagate back from the VAE's encoder part too, which introduces extra time costs in training. We use the multi-resolution grid encoder to implement the NeRF backbone (implementation from torch-ngp), which enables much faster rendering.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    flat

    flat

    All-in-one image generation AI

    All-in-one image generation AI. Launch StableDiffusionWebUI with just a few clicks. No Python installation or repository cloning is required. Displays generated images in a list with information such as prompts. The image folder can be set freely.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    video-subtitle-remover

    video-subtitle-remover

    AI-based tool for removing hardsubs and text-like watermarks

    Video-subtitle-remover (VSR) is an AI-based software that removes hardcoded subtitles from videos or Pictures.
    Downloads: 63 This Week
    Last Update:
    See Project
  • 20
    HunyuanImage-3.0

    HunyuanImage-3.0

    A Powerful Native Multimodal Model for Image Generation

    HunyuanImage-3.0 is a powerful, native multimodal text-to-image generation model released by Tencent’s Hunyuan team. It unifies multimodal understanding and generation in a single autoregressive framework, combining text and image modalities seamlessly rather than relying on separate image-only diffusion components. It uses a Mixture-of-Experts (MoE) architecture with many expert subnetworks to scale efficiently, deploying only a subset of experts per token, which allows large parameter counts without linear inference cost explosion. The model is intended to be competitive with closed-source image generation systems, aiming for high fidelity, prompt adherence, fine detail, and even “world knowledge” reasoning (i.e. leveraging context, semantics, or common sense in generation). The GitHub repo includes code, scripts, model loading instructions, inference utilities, prompt handling, and integration with standard ML tooling (e.g. Hugging Face / Transformers).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Deface GUI -  Face Anonymization Tool

    Deface GUI - Face Anonymization Tool

    Graphical User Interface Face Anonymization Tool

    This application is a professional tool with a graphical user interface that enables anonymization of faces using the Deface Engine. Cross-Platform Compatible (Linux-Windows) NOTE: To use on Windows, first install Python. Then, if necessary, install “pip install deface” (only if necessary).
    Downloads: 15 This Week
    Last Update:
    See Project
  • 22
    BCI

    BCI

    BCI: Breast Cancer Immunohistochemical Image Generation

    Breast Cancer Immunohistochemical Image Generation through Pyramid Pix2pix. We have released the trained model on BCI and LLVIP datasets. We host a competition for breast cancer immunohistochemistry image generation on Grand Challenge. Project pix2pix provides a python script to generate pix2pix training data in the form of pairs of images {A,B}, where A and B are two different depictions of the same underlying scene, these can be pairs {HE, IHC}. Then we can learn to translate A(HE images) to B(IHC images). The evaluation of human epidermal growth factor receptor 2 (HER2) expression is essential to formulate a precise treatment for breast cancer. The routine evaluation of HER2 is conducted with immunohistochemical techniques (IHC), which is very expensive. Therefore, for the first time, we propose a breast cancer immunohistochemical (BCI) benchmark attempting to synthesize IHC data directly with the paired hematoxylin and eosin (HE) stained images.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    ChatFred

    ChatFred

    Alfred workflow using ChatGPT, DALL·E 2 and other models for chatting

    Alfred workflow using ChatGPT, DALL·E 2 and other models for chatting, image generation and more. Access ChatGPT, DALL·E 2, and other OpenAI models. Language models often give wrong information. Verify answers if they are important. Talk with ChatGPT via the cf keyword. Answers will show as Large Type. Alternatively, use the Universal Action, Fallback Search, or Hotkey. To generate text with InstructGPT models and see results in-line, use the cft keyword. ⤓ Install on the Alfred Gallery or download it over GitHub and add your OpenAI API key. If you have used ChatGPT or DALL·E 2, you already have an OpenAI account. Otherwise, you can sign up here - You will receive $5 in free credit, no payment data is required. Afterward you can create your API key. To start a conversation with ChatGPT either use the keyword cf, setup the workflow as a fallback search in Alfred or create your custom hotkey to directly send the clipboard content to ChatGPT.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Core ML Stable Diffusion

    Core ML Stable Diffusion

    Stable Diffusion with Core ML on Apple Silicon

    Run Stable Diffusion on Apple Silicon with Core ML. python_coreml_stable_diffusion, a Python package for converting PyTorch models to Core ML format and performing image generation with Hugging Face diffusers in Python. StableDiffusion, a Swift package that developers can add to their Xcode projects as a dependency to deploy image generation capabilities in their apps. The Swift package relies on the Core ML model files generated by python_coreml_stable_diffusion. Hugging Face ran the conversion procedure on the following models and made the Core ML weights publicly available on the Hub. If you would like to convert a version of Stable Diffusion that is not already available on the Hub, please refer to the Converting Models to Core ML. Log in to or register for your Hugging Face account, generate a User Access Token and use this token to set up Hugging Face API access by running huggingface-cli login in a Terminal window.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    DALL-E 2 - Pytorch

    DALL-E 2 - Pytorch

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch. The main novelty seems to be an extra layer of indirection with the prior network (whether it is an autoregressive transformer or a diffusion network), which predicts an image embedding based on the text embedding from CLIP. Specifically, this repository will only build out the diffusion prior network, as it is the best performing variant (but which incidentally involves a causal transformer as the denoising network) To train DALLE-2 is a 3 step process, with the training of CLIP being the most important. To train CLIP, you can either use x-clip package, or join the LAION discord, where a lot of replication efforts are already underway. Then, you will need to train the decoder, which learns to generate images based on the image embedding coming from the trained CLIP.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next