Browse free open source Unix Shell AI Agents and projects below. Use the toggles on the left to filter open source Unix Shell AI Agents by OS, license, language, programming language, and project status.

  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Olares

    Olares

    Olares: An Open-Source Sovereign Cloud OS for Local AI

    Olares is an AI-powered chatbot framework designed to support real-time natural language understanding and response generation.
    Downloads: 15 This Week
    Last Update:
    See Project
  • 2
    Diplomacy Cicero

    Diplomacy Cicero

    Code for Cicero, an AI agent that plays the game of Diplomacy

    The project is the codebase for an AI agent named Cicero developed by Facebook Research. It is designed to play the board game Diplomacy by combining open-domain natural language negotiation with strategic planning. The repository includes training code, model checkpoints, and infrastructure for both language modelling (via the ParlAI framework) and reinforcement learning for strategy agents. It supports two variants: Cicero (which handles full “press” negotiation) and Diplodocus (a variant focused on no-press diplomacy) as described in the README. The codebase is implemented primarily in Python with performance-critical components in C++ (via pybind11 bindings) and is configured to run in a high‐GPU cluster environment. Configuration is managed via protobuf files to define tasks such as self-play, benchmark agent comparisons, and RL training. The project is now archived and read-only, reflecting that it is no longer actively developed but remains publicly available for research use.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next