Showing 5 open source projects for "json-c"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    c/ua

    c/ua

    c/ua is the Docker Container for Computer-Use AI Agents

    Cua is a Docker-based framework that facilitates the deployment and management of computer-use AI agents. It provides a sandboxed environment where agents can perform tasks on macOS and Linux virtual machines, supporting various AI models and ensuring safe execution. Cua is particularly useful for developers looking to test and run AI agents in controlled settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Bolna

    Bolna

    Conversational voice AI agents

    Bolna is an end-to-end open-source platform for building conversational voice AI agents, enabling developers to create voice-first conversational assistants efficiently.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    cognee

    cognee

    Deterministic LLMs Outputs for AI Applications and AI Agents

    ...This self-optimizing process ensures ultra-relevant, personalized, and contextually aware LLM retrievals. Any kind of data works; unstructured text or raw media files, PDFs, tables, presentations, JSON files, and so many more. Add small or large files, or many files at once. We map out a knowledge graph from all the facts and relationships we extract from your data. Then, we establish graph topology and connect related knowledge clusters, enabling the LLM to "understand" the data.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    mcp-use

    mcp-use

    A solution to build and deploy MCP agents and applications

    mcp-use is an open source development platform offering SDKs, cloud infrastructure, and a developer-friendly control plane for building, managing, and deploying AI agents that leverage the Model Context Protocol (MCP). It enables connection to multiple MCP servers, each exposing specific tool capabilities like browsing, file operations, or specialized integrations, through a unified MCPClient. Developers can create custom agents (via MCPAgent) that dynamically select the most appropriate...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Inventors: Validate Your Idea, Protect It and Gain Market Advantages Icon
    Inventors: Validate Your Idea, Protect It and Gain Market Advantages

    SenseIP is ideal for individual inventors, startups, and businesses

    senseIP is an AI innovation platform for inventors, automating any aspect of IP from the moment you have an idea. You can have it researched for uniqueness and protected; quickly and effortlessly, without expensive attorneys. Built for business success while securing your competitive edge.
    Learn More
  • 5
    Diplomacy Cicero

    Diplomacy Cicero

    Code for Cicero, an AI agent that plays the game of Diplomacy

    ...It supports two variants: Cicero (which handles full “press” negotiation) and Diplodocus (a variant focused on no-press diplomacy) as described in the README. The codebase is implemented primarily in Python with performance-critical components in C++ (via pybind11 bindings) and is configured to run in a high‐GPU cluster environment. Configuration is managed via protobuf files to define tasks such as self-play, benchmark agent comparisons, and RL training. The project is now archived and read-only, reflecting that it is no longer actively developed but remains publicly available for research use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next