Showing 42 open source projects for "source code tracking"

View related business solutions
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • 1
    Agent Lightning

    Agent Lightning

    The absolute trainer to light up AI agents

    Agent Lightning is an open-source framework developed by Microsoft to train and optimize AI agents using techniques like reinforcement learning (RL), supervised fine-tuning, and automatic prompt optimization, with minimal or zero changes to existing agent code. It’s designed to be compatible with a wide range of agent architectures and frameworks — from LangChain and OpenAI Agent SDKs to AutoGen and custom Python agents — making it broadly applicable across different agent tooling ecosystems. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    AI Agents Masterclass

    AI Agents Masterclass

    Follow along with my AI Agents Masterclass videos

    AI Agents Masterclass is an educational open-source repository designed to teach developers how to build, train, and deploy intelligent AI agents using modern tooling and workflow patterns. The project includes structured lessons, code examples, and practical exercises that cover foundational concepts like prompt engineering, chaining agents, tool usage, plan execution, evaluation, and safety considerations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Agent Stack

    Agent Stack

    Deploy and share agents with open infrastructure

    Agent Stack is an open infrastructure platform designed to take AI agents from prototype to production, no matter how they were built. It includes a runtime environment, multi-tenant web UI, catalog of agents, and deployment flow that seeks to remove vendor lock-in and provide greater autonomy. Under the hood it’s built on the “Agent2Agent” (A2A) protocol, enabling interoperability between different agent ecosystems, runtime services, and frameworks. The platform supports agents built in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    TaskWeaver

    TaskWeaver

    A code-first agent framework for seamlessly planning analytics tasks

    TaskWeaver is a multi-agent AI framework designed for orchestrating autonomous agents that collaborate to complete complex tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • 5
    FastAgency

    FastAgency

    The fastest way to bring multi-agent workflows to production

    FastAgency is a framework that simplifies the creation and deployment of AI-driven automation agents. It provides a structured environment for developing AI assistants capable of handling various business and technical tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Agentex

    Agentex

    Open source codebase for Scale Agentex

    AgentEX is an open framework from Scale for building, running, and evaluating agentic workflows, with an emphasis on reproducibility and measurable outcomes rather than ad-hoc demos. It treats an “agent” as a composition of a policy (the LLM), tools, memory, and an execution runtime so you can test the whole loop, not just prompting. The repo focuses on structured experiments: standardized tasks, canonical tool interfaces, and logs that make it possible to compare models, prompts, and tool...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    smolagents

    smolagents

    Agents write python code to call tools and orchestrate other agents

    This library is the simplest framework out there to build powerful agents. We provide our definition in this page, where you’ll also find tips for when to use them or not (spoilers: you’ll often be better off without agents). smolagents is a lightweight framework for building AI agents using large language models (LLMs). It simplifies the development of AI-driven applications by providing tools to create, train, and deploy language model-based agents.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Semantic Router

    Semantic Router

    Superfast AI decision making and processing of multi-modal data

    Semantic Router is a superfast decision-making layer for your LLMs and agents. Rather than waiting for slow, unreliable LLM generations to make tool-use or safety decisions, we use the magic of semantic vector space — routing our requests using semantic meaning. Combining LLMs with deterministic rules means we can be confident that our AI systems behave as intended. Cramming agent tools into the limited context window is expensive, slow, and fundamentally limited. Semantic Router enables...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    SWE-agent

    SWE-agent

    SWE-agent takes a GitHub issue and tries to automatically fix it

    SWE-agent turns LMs (e.g. GPT-4) into software engineering agents that can resolve issues in real GitHub repositories. On the SWE-bench, the SWE-agent resolves 12.47% of issues, achieving state-of-the-art performance on the full test set. We accomplish our results by designing simple LM-centric commands and feedback formats to make it easier for the LM to browse the repository, and view, edit, and execute code files. We call this an Agent-Computer Interface (ACI).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • 10
    iX

    iX

    Autonomous GPT-4 agent platform

    IX is a platform for designing and deploying autonomous and [semi]-autonomous LLM-powered agents and workflows. IX provides a flexible and scalable solution for delegating tasks to AI-powered agents. Agents created with the platform can automate a wide variety of tasks while running in parallel and communicating with each other.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Shinkai: Local AI Agents

    Shinkai: Local AI Agents

    Shinkai allows you to create advanced AI (local) agents effortlessly

    Shinkai is a free, open-source AI platform that lets anyone create powerful AI agents without coding. These agents can collaborate with each other, handle complex tasks, and operate in decentralized crypto environments. Key Features: - No-Code Agent Creation - Build specialized agents (trading bots, sentiment trackers, etc.) with simple descriptions - Multi-Agent Collaboration - Agents work together to solve complex problems - Crypto Integration - Built-in support for decentralized payments and transactions - Flexible AI Models - Choose from cloud models (GPT-4, Claude) or run locally - Universal Compatibility - Works with Model Context Protocol (MCP) for cross-platform integration - Local Security - Crypto keys and computations stay on your device Shinkai transforms AI from single-task tools into collaborative, autonomous systems that can operate in decentralized networks while maintaining privacy and security.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    README-AI

    README-AI

    README file generator, powered by AI

    README-AI is an automated documentation generator that creates structured README files for GitHub repositories using AI-powered analysis.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Sweep AI

    Sweep AI

    Sweep: AI-powered Junior Developer for small features and bug fixes

    Let Sweep handle your tech debt so you can focus on the exciting problems. Sweep is an AI junior developer that transforms bug reports & feature requests into code changes. Describe bugs, small features, and refactors like you would to a junior developer and Sweep.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    LangChain Apps on Production with Jina

    LangChain Apps on Production with Jina

    Langchain Apps on Production with Jina & FastAPI

    Jina is an open-source framework for building scalable multi-modal AI apps on Production. LangChain is another open-source framework for building applications powered by LLMs. long-chain-serve helps you deploy your LangChain apps on Jina AI Cloud in a matter of seconds. You can benefit from the scalability and serverless architecture of the cloud without sacrificing the ease and convenience of local development. And if you prefer, you can also deploy your LangChain apps on your own...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    AI-Agent-Host

    AI-Agent-Host

    The AI Agent Host is a module-based development environment.

    The AI Agent Host integrates several advanced technologies and offers a unique combination of features for the development of language model-driven applications. The AI Agent Host is a module-based environment designed to facilitate rapid experimentation and testing. It includes a docker-compose configuration with QuestDB, Grafana, Code-Server and Nginx. The AI Agent Host provides a seamless interface for managing and querying data, visualizing results, and coding in real-time. The AI...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Multi-Agent Particle Envs

    Multi-Agent Particle Envs

    Code for a multi-agent particle environment used in a paper

    Multiagent Particle Environments is a lightweight framework for simulating multi-agent reinforcement learning tasks in a continuous observation space with discrete action settings. It was originally developed by OpenAI and used in the influential paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. The environment provides simple particle-based worlds with simulated physics, where agents can move, communicate, and interact with each other. Scenarios are designed to...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17

    PyGOAPng

    Python Goal Oriented Action Planning (GOAP) library

    A library for implementing GOAP in an AI agent. Based on pygoap v3 by Leif Theden et al. Updated code to work without having pygame installed, bug-fixed functions to make them implement the behaviors that were expected, and implemented desired behaviors so that the Pirate demo works properly for all known actions and goals.
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB