3 projects for "deep learning with python" with 2 filters applied:

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    PokeeResearch-7B

    PokeeResearch-7B

    Pokee Deep Research Model Open Source Repo

    PokeeResearchOSS provides an open-source, agentic “deep research” model centered on a 7B backbone that can browse, read, and synthesize current information from the web. Instead of relying only on static training data, the agent performs searches, visits pages, and extracts evidence before forming answers to complex queries. It is built to operate end-to-end: planning a research strategy, gathering sources, reasoning over conflicting claims, and writing a grounded response. The repository...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    AutoGen

    AutoGen

    An Open-Source Programming Framework for Agentic AI

    AutoGen is an open-source programming framework for building AI agents and facilitating cooperation among multiple agents to solve tasks. AutoGen aims to provide an easy-to-use and flexible framework for accelerating development and research on agentic AI, like PyTorch for Deep Learning. It offers features such as agents that can converse with other agents, LLM and tool use support, autonomous and human-in-the-loop workflows, and multi-agent conversation patterns. AutoGen provides multi-agent conversation framework as a high-level abstraction. With this framework, one can conveniently build LLM workflows. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    OWL

    OWL

    Optimized Workforce Learning for General Multi-Agent Assistance

    Optimized Workforce Learning for General Multi-Agent Assistance in Real-World Task Automation. OWL (Optimized Workforce Learning for General Multi-Agent Assistance in Real-World Task Automation) is an advanced framework designed to enhance multi-agent collaboration, improving task automation across various domains. By utilizing dynamic agent interactions, OWL aims to streamline and optimize complex workflows, making AI collaboration more natural, efficient, and adaptable. It is built on...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next