Browse free open source Python AI Agent Frameworks and projects below. Use the toggles on the left to filter open source Python AI Agent Frameworks by OS, license, language, programming language, and project status.

  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 1
    AutoGPT

    AutoGPT

    Powerful tool that lets you create and run intelligent agents

    AutoGPT is an experimental open-source application showcasing the capabilities of the GPT-4 language model. This program, driven by GPT-4, chains together LLM "thoughts", to autonomously achieve whatever goal you set. As one of the first examples of GPT-4 running fully autonomously, AutoGPT pushes the boundaries of what is possible with AI.
    Downloads: 37 This Week
    Last Update:
    See Project
  • 2
    OpenAI Agents SDK

    OpenAI Agents SDK

    A lightweight, powerful framework for multi-agent workflows

    The OpenAI Agents Python SDK is a powerful yet lightweight framework for developing multi-agent workflows. This framework enables developers to create and manage agents that can coordinate tasks autonomously, using a set of instructions, tools, guardrails, and handoffs. The SDK allows users to configure workflows in which agents can pass control to other agents as necessary, ensuring dynamic task management. It also includes a built-in tracing system for tracking, debugging, and optimizing agent activities.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 3
    OmniParser

    OmniParser

    A simple screen parsing tool towards pure vision based GUI agent

    OmniParser is a comprehensive method for parsing user interface screenshots into structured elements, significantly enhancing the ability of multimodal models like GPT-4 to generate actions accurately grounded in corresponding regions of the interface. It reliably identifies interactable icons within user interfaces and understands the semantics of various elements in a screenshot, associating intended actions with the correct screen regions. To achieve this, OmniParser curates an interactable icon detection dataset containing 67,000 unique screenshot images labeled with bounding boxes of interactable icons derived from DOM trees. Additionally, a collection of 7,000 icon-description pairs is used to fine-tune a caption model that extracts the functional semantics of detected elements. Evaluations on benchmarks such as SeeClick, Mind2Web, and AITW demonstrate that OmniParser outperforms GPT-4V baselines, even when using only screenshot inputs without additional information.
    Downloads: 13 This Week
    Last Update:
    See Project
  • 4
    Agent Zero

    Agent Zero

    Agent Zero AI framework

    Agent Zero is not a predefined agentic framework. It is designed to be dynamic, organically growing, and learning as you use it. Agent Zero is fully transparent, readable, comprehensible, customizable and interactive. Agent Zero uses the computer as a tool to accomplish its (your) tasks. Agents can communicate with their superiors and subordinates, asking questions, giving instructions, and providing guidance. Instruct your agents in the system prompt on how to communicate effectively. The terminal interface is real-time streamed and interactive. You can stop and intervene at any point. If you see your agent heading in the wrong direction, just stop and tell it right away. There is a lot of freedom in this framework. You can instruct your agents to regularly report back to superiors asking for permission to continue. You can instruct them to use point-scoring systems when deciding when to delegate subtasks. Superiors can double-check subordinates' results and disputes.
    Downloads: 12 This Week
    Last Update:
    See Project
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 5
    CAMEL AI

    CAMEL AI

    Finding the Scaling Law of Agents. A multi-agent framework

    The rapid advancement of conversational and chat-based language models has led to remarkable progress in complex task-solving. However, their success heavily relies on human input to guide the conversation, which can be challenging and time-consuming. This paper explores the potential of building scalable techniques to facilitate autonomous cooperation among communicative agents and provide insight into their "cognitive" processes. To address the challenges of achieving autonomous cooperation, we propose a novel communicative agent framework named role-playing. Our approach involves using inception prompting to guide chat agents toward task completion while maintaining consistency with human intentions. We showcase how role-playing can be used to generate conversational data for studying the behaviors and capabilities of chat agents, providing a valuable resource for investigating conversational language models.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 6
    MetaGPT

    MetaGPT

    The Multi-Agent Framework

    The Multi-Agent Framework: Given one line Requirement, return PRD, Design, Tasks, Repo. Assign different roles to GPTs to form a collaborative software entity for complex tasks. MetaGPT takes a one-line requirement as input and outputs user stories / competitive analysis/requirements/data structures / APIs / documents, etc. Internally, MetaGPT includes product managers/architects/project managers/engineers. It provides the entire process of a software company along with carefully orchestrated SOPs.
    Downloads: 9 This Week
    Last Update:
    See Project
  • 7
    CrewAI

    CrewAI

    Framework for orchestrating role-playing, autonomous AI agents

    Framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks. The power of AI collaboration has too much to offer. CrewAI is designed to enable AI agents to assume roles, share goals, and operate in a cohesive unit - much like a well-oiled crew. Whether you're building a smart assistant platform, an automated customer service ensemble, or a multi-agent research team, CrewAI provides the backbone for sophisticated multi-agent interactions.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 8
    Haystack

    Haystack

    Haystack is an open source NLP framework to interact with your data

    Apply the latest NLP technology to your own data with the use of Haystack's pipeline architecture. Implement production-ready semantic search, question answering, summarization and document ranking for a wide range of NLP applications. Evaluate components and fine-tune models. Ask questions in natural language and find granular answers in your documents using the latest QA models with the help of Haystack pipelines. Perform semantic search and retrieve ranked documents according to meaning, not just keywords! Make use of and compare the latest pre-trained transformer-based languages models like OpenAI’s GPT-3, BERT, RoBERTa, DPR, and more. Pick any Transformer model from Hugging Face's Model Hub, experiment, find the one that works. Use Haystack NLP components on top of Elasticsearch, OpenSearch, or plain SQL. Boost search performance with Pinecone, Milvus, FAISS, or Weaviate vector databases, and dense passage retrieval.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    Self-Operating Computer

    Self-Operating Computer

    A framework to enable multimodal models to operate a computer

    The Self-Operating Computer Framework is an innovative system that enables multimodal models to autonomously operate a computer by interpreting the screen and executing mouse and keyboard actions to achieve specified objectives. This framework is compatible with various multimodal models and currently integrates with GPT-4o, o1, Gemini Pro Vision, Claude 3, and LLaVa. Notably, it was the first known project to implement a multimodal model capable of viewing and controlling a computer screen. The framework supports features like Optical Character Recognition (OCR) and Set-of-Mark (SoM) prompting to enhance visual grounding capabilities. It is designed to be compatible with macOS, Windows, and Linux (with X server installed), and is released under the MIT license.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    OpenAI Agents (Python)

    OpenAI Agents (Python)

    A lightweight, powerful framework for multi-agent workflows

    openai-agents-python is a library developed by OpenAI to simplify the process of creating and running agents that interact with tools and APIs using OpenAI models. It provides abstractions for tool usage, memory management, and agent workflows, enabling developers to define function-calling agents that reason through multi-step tasks. Ideal for building custom AI workflows, the library supports dynamic tool definitions and contextual memory handling.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    PraisonAI

    PraisonAI

    PraisonAI application combines AutoGen and CrewAI or similar framework

    PraisonAI application combines AutoGen and CrewAI or similar frameworks into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customization, and efficient human-agent collaboration. Chat with your ENTIRE Codebase. Praison AI, leveraging both AutoGen and CrewAI or any other agent framework, represents a low-code, centralized framework designed to simplify the creation and orchestration of multi-agent systems for various LLM applications, emphasizing ease of use, customization, and human-agent interaction.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    BISHENG

    BISHENG

    BISHENG is an open LLM devops platform for next generation apps

    BISHENG is an open LLM application DevOps platform, focusing on enterprise scenarios. It has been used by a large number of industry-leading organizations and Fortune 500 companies. "Bi Sheng" was the inventor of movable type printing, which played a vital role in promoting the transmission of human knowledge. We hope that BISHENG can also provide strong support for the widespread implementation of intelligent applications. Everyone is welcome to participate.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    FastAgency

    FastAgency

    The fastest way to bring multi-agent workflows to production

    FastAgency is a framework that simplifies the creation and deployment of AI-driven automation agents. It provides a structured environment for developing AI assistants capable of handling various business and technical tasks.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    Qwen-Agent

    Qwen-Agent

    Agent framework and applications built upon Qwen>=3.0

    Qwen-Agent is a framework for building applications / agents using Qwen models (version 3.0+). It provides components for instruction following, tool usage (function calling), planning, memory, RAG (retrieval augmented generation), code interpreter, etc. It ships with example applications (Browser Assistant, Code Interpreter, Custom Assistant), supports GUI front-ends, backends, server setups. Agent workflow can maintain context / memory to perform multi-turn or more complex logic over time. It acts as the backend for Qwen Chat among other use cases. Built-in Code Interpreter tool that can execute code (locally) as part of agent workflows.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    Shinkai: Local AI Agents

    Shinkai: Local AI Agents

    Shinkai allows you to create advanced AI (local) agents effortlessly

    Shinkai is a free, open-source AI platform that lets anyone create powerful AI agents without coding. These agents can collaborate with each other, handle complex tasks, and operate in decentralized crypto environments. Key Features: - No-Code Agent Creation - Build specialized agents (trading bots, sentiment trackers, etc.) with simple descriptions - Multi-Agent Collaboration - Agents work together to solve complex problems - Crypto Integration - Built-in support for decentralized payments and transactions - Flexible AI Models - Choose from cloud models (GPT-4, Claude) or run locally - Universal Compatibility - Works with Model Context Protocol (MCP) for cross-platform integration - Local Security - Crypto keys and computations stay on your device Shinkai transforms AI from single-task tools into collaborative, autonomous systems that can operate in decentralized networks while maintaining privacy and security.
    Downloads: 23 This Week
    Last Update:
    See Project
  • 16
    Agent S2

    Agent S2

    Agent S: an open agentic framework that uses computers like a human

    Simular's Agent S2 represents a leap forward in the development of computer-use agents, capable of autonomously interacting with a range of devices and interfaces. By integrating specialized AI models, Agent S2 delivers state-of-the-art performance, whether on desktop systems or smartphones. Through modular architecture, it efficiently handles complex tasks, such as navigating UIs, performing low-level actions like text selection, and executing high-level strategies like planning. Additionally, the system's proactive hierarchical planning allows for real-time adaptation, making it an ideal solution for businesses seeking to streamline operations and automate digital workflows. Agent S2 is designed with flexibility, enabling seamless scaling for future applications and tasks.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    AgentForge

    AgentForge

    Extensible AGI Framework

    AgentForge is a framework for creating and deploying AI agents that can perform autonomous decision-making and task execution. It enables developers to define agent behaviors, train models, and integrate AI-powered automation into various applications.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    Composio

    Composio

    Composio equip's your AI agents & LLMs

    Empower your AI agents with Composio - a platform for managing and integrating tools with LLMs & AI agents using Function Calling. Equip your agent with high-quality tools & integrations without worrying about authentication, accuracy, and reliability in a single line of code.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    DB-GPT

    DB-GPT

    Revolutionizing Database Interactions with Private LLM Technology

    DB-GPT is an experimental open-source project that uses localized GPT large models to interact with your data and environment. With this solution, you can be assured that there is no risk of data leakage, and your data is 100% private and secure.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 20
    Dendrite

    Dendrite

    Tools to build web AI agents that can authenticate

    Dendrite Python SDK is a toolkit for building web AI agents that can authenticate, interact with, and extract data from any website, facilitating web automation tasks.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 21
    GPT Researcher

    GPT Researcher

    LLM based autonomous agent that does online comprehensive research

    Say Hello to GPT Researcher, your AI agent for rapid insights and comprehensive research. GPT Researcher is the leading autonomous agent that takes care of everything from accurate source gathering to organization of research results.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 22
    LLMStack

    LLMStack

    No-code multi-agent framework to build LLM Agents, workflows

    LLMStack is a no-code platform for building generative AI agents, workflows and chatbots, connecting them to your data and business processes. Build tailor-made generative AI agents, applications and chatbots that cater to your unique needs by chaining multiple LLMs. Seamlessly integrate your own data, internal tools and GPT-powered models without any coding experience using LLMStack's no-code builder. Trigger your AI chains from Slack or Discord. Deploy to the cloud or on-premise.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 23
    Langroid

    Langroid

    Harness LLMs with Multi-Agent Programming

    Given the remarkable abilities of recent Large Language Models (LLMs), there is an unprecedented opportunity to build intelligent applications powered by this transformative technology. The top question for any enterprise is: how best to harness the power of LLMs for complex applications? For technical and practical reasons, building LLM-powered applications is not as simple as throwing a task at an LLM system and expecting it to do it. Effectively leveraging LLMs at scale requires a principled programming framework. In particular, there is often a need to maintain multiple LLM conversations, each instructed in different ways, and "responsible" for different aspects of a task.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    SalesGPT

    SalesGPT

    Context-aware AI Sales Agent to automate sales outreach

    This repo is an implementation of a context-aware AI Agent for Sales using LLMs and can work across voice, email and texting (SMS, WhatsApp, WeChat, Weibo, Telegram, etc.). SalesGPT is context-aware, which means it can understand what stage of a sales conversation it is in and act accordingly. Moreover, SalesGPT has access to tools, such as your own pre-defined product knowledge base, significantly reducing hallucinations.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    Strands Agents

    Strands Agents

    A model-driven approach to building AI agents in just a few lines

    Strands Agents SDK is a model-driven approach to building and running AI agents. It enables the creation of simple conversational assistants to complex autonomous workflows, scaling from local development to production deployment. The SDK is designed to be simple yet powerful, catering to various AI agent development needs.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.