Showing 2 open source projects for "liblpsolve55.so"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    Jinja

    Jinja

    Ultra fast and expressive template engine

    Jinja is a fast, full-featured and expressive template engine for Python. It offers full unicode support, a sandboxed environment for safe executions, and so much more. Jinja is among the most widely used template engines for Python, and for good reason. It is both beautiful and powerful, and makes a template designer’s job a lot easier. Jinja is inspired by Django's templating system, but steps it up with an expressive language that results in more powerful tools, plus an automatic HTML escaping system for utmost security. ...
    Downloads: 17 This Week
    Last Update:
    See Project
  • 2
    Uncertainty Baselines

    Uncertainty Baselines

    High-quality implementations of standard and SOTA methods

    Uncertainty Baselines is a collection of strong, well-documented training pipelines that make it straightforward to evaluate predictive uncertainty in modern machine learning models. Rather than offering toy scripts, it provides end-to-end recipes—data input, model architectures, training loops, evaluation metrics, and logging—so results are comparable across runs and research groups. The library spans canonical modalities and tasks, from image classification and NLP to tabular problems, with baselines that cover both deterministic and probabilistic approaches. Techniques include deep ensembles, Monte Carlo dropout, temperature scaling, stochastic variational inference, heteroscedastic heads, and out-of-distribution detection workflows. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next