Search Results for "math with python learn" - Page 9

Showing 558 open source projects for "math with python learn"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    PRM800K

    PRM800K

    800,000 step-level correctness labels on LLM solutions to MATH problem

    PRM800K is a process supervision dataset accompanying the paper Let’s Verify Step by Step, providing 800,000 step-level correctness labels on model-generated solutions to problems from the MATH dataset. The repository releases the raw labels and the labeler instructions used in two project phases, enabling researchers to study how human raters graded intermediate reasoning. Data are stored as newline-delimited JSONL files tracked with Git LFS, where each line is a full solution sample that...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Python Data Science Handbook

    Python Data Science Handbook

    Python Data Science Handbook: full text in Jupyter Notebooks

    The Python Data Science Handbook is a comprehensive collection of Jupyter notebooks written by Jake VanderPlas covering fundamental Python libraries for data science, including IPython, NumPy, Pandas, Matplotlib, Scikit-Learn and more. The project is designed for data scientists, researchers, and anyone transitioning into Python-based data work; it assumes you already know basic Python and focuses more on how to use the ecosystem effectively. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Learn Prompting

    Learn Prompting

    This website is a free, open-source guide on prompt engineering

    ...We launched the first ever prompt hacking competition designed to enhance AI safety and education by challenging participants to outsmart large language models from May 5th to June 3rd! The competition featured 10 increasingly difficult levels of prompt hacking defenses and the chance to win over $35,000 in prizes. Coding is a great skill to learn alongside prompt engineering. We recommend learning Python, as it is a popular language for AI and machine learning. Be among the first to access the certification program as soon as it launches.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    CausalNex

    CausalNex

    A Python library that helps data scientists to infer causation

    CausalNex is a Python library that uses Bayesian Networks to combine machine learning and domain expertise for causal reasoning. You can use CausalNex to uncover structural relationships in your data, learn complex distributions, and observe the effect of potential interventions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • AestheticsPro Medical Spa Software Icon
    AestheticsPro Medical Spa Software

    Our new software release will dramatically improve your medspa business performance while enhancing the customer experience

    AestheticsPro is the most complete Aesthetics Software on the market today. HIPAA Cloud Compliant with electronic charting, integrated POS, targeted marketing and results driven reporting; AestheticsPro delivers the tools you need to manage your medical spa business. It is our mission To Provide an All-in-One Cutting Edge Software to the Aesthetics Industry.
    Learn More
  • 5
    Advanced Division

    Advanced Division

    Divide numbers with recurring decimals

    Library / application for dividing numbers with recurring decimals. Written in JavaScript, Python and Dart. Learn more: https://advdiv.ratajs.cz/ Installation instructions: https://sourceforge.net/projects/advanced-division/files/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    TensorFlow Documentation

    TensorFlow Documentation

    TensorFlow documentation

    An end-to-end platform for machine learning. TensorFlow makes it easy to create ML models that can run in any environment. Learn how to use the intuitive APIs through interactive code samples.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    DALL-E in Pytorch

    DALL-E in Pytorch

    Implementation / replication of DALL-E, OpenAI's Text to Image

    Implementation / replication of DALL-E (paper), OpenAI's Text to Image Transformer, in Pytorch. It will also contain CLIP for ranking the generations. Kobiso, a research engineer from Naver, has trained on the CUB200 dataset here, using full and deepspeed sparse attention. You can also skip the training of the VAE altogether, using the pretrained model released by OpenAI! The wrapper class should take care of downloading and caching the model for you auto-magically. You can also use the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    sense2vec

    sense2vec

    Contextually-keyed word vectors

    sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors. This library is a simple Python implementation for loading, querying and training sense2vec models. For more details, check out our blog post. To explore the semantic similarities across all Reddit comments of 2015 and 2019, see the interactive demo.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    ChatGPT Plugins Collection

    ChatGPT Plugins Collection

    An unofficial collection of Plugins for ChatGPT

    ChatGPT-Plugins-Collection is a community-driven repository that gathers examples and resources for building, testing, and experimenting with ChatGPT plugins. The collection provides a variety of plugin implementations that showcase different use cases, helping developers learn how to extend ChatGPT’s functionality. It is designed to serve both as a learning resource for beginners and a reference point for more experienced developers. By centralizing community contributions, the repository...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The complete IT asset and license management platform Icon
    The complete IT asset and license management platform

    Gain full visibility and control over your IT assets, licenses, usage and spend in one place with Setyl.

    The platform seamlessly integrates with 100+ IT systems, including MDM, RMM, IDP, SSO, HR, finance, helpdesk tools, and more.
    Learn More
  • 10
    Financial- Math Calculator

    Financial- Math Calculator

    Financial- Math Calculator

    Financial-Math Calculator is a software which aims to assist you in conducting a variety of financial estimates and obtain results as accurate as possible for periods, rates, interest and payments. It features several functions, allowing you to learn the ‘Present Value’, ‘Future Value’ or the ‘Interest Payment’ for a specific investment, as well as the ‘Rate’, ‘Periods and ‘Payment’ amounts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    KAGSA

    KAGSA

    KAGSA PROGRAMMING LANGUAGE

    it designed to be easy to learn and practical for use in various projects. It has a flexible syntax and allows some things that other languages prohibit, such as using certain symbols in variable names and starting variable names with numbers. KAGSA contains several main components, including a lexer, syntax checker, parser, and compiler. It supports object-oriented programming, iteration, and other features commonly used in programming languages.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    ScikitLearn.jl

    ScikitLearn.jl

    Julia implementation of the scikit-learn API

    The scikit-learn Python library has proven very popular with machine learning researchers and data scientists in the last five years. It provides a uniform interface for training and using models, as well as a set of tools for chaining (pipelines), evaluating, and tuning model hyperparameters. ScikitLearn.jl brings these capabilities to Julia. Its primary goal is to integrate both Julia- and Python-defined models together into the scikit-learn framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13

    PLplot

    Cross-platform, scientific graphics plotting library

    PLplot is a cross-platform, scientific graphics plotting library that supports math symbols and human languages (via UTF-8 user input strings); plot capabilities for multiple non-interactive plot file formats and in multiple interactive environments; and bindings for multiple computer languages.
    Leader badge
    Downloads: 47 This Week
    Last Update:
    See Project
  • 14
    auto-sklearn

    auto-sklearn

    Automated machine learning with scikit-learn

    auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. auto-sklearn frees a machine learning user from algorithm selection and hyperparameter tuning. It leverages recent advantages in Bayesian optimization, meta-learning and ensemble construction. Auto-sklearn 2.0 includes latest research on automatically configuring the AutoML system itself and contains a multitude of improvements which speed up the fitting the AutoML system....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Self-learning-Computer-Science

    Self-learning-Computer-Science

    Resources to learn computer science in your spare time

    Self-learning Computer Science is a curated, open-source guide repository designed to help learners independently study computer science topics using high-quality university-level resources. The author (an undergraduate CS student) assembled links to courses from institutions like MIT, UC Berkeley, Stanford, etc., covering mathematics, programming, data structures/algorithms, computer architecture, machine learning, software engineering and more. It’s aimed at learners who find traditional...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    UnionML

    UnionML

    Build and deploy machine learning microservices

    Creating ML apps should be simple and frictionless. UnionML is an open-source Python framework built on top of Flyte™, unifying the complex ecosystem of ML tools into a single interface. Combine the tools that you love using a simple, standardized API so you can stop writing so much boilerplate and focus on what matters: the data and the models that learn from them. Fit the rich ecosystem of tools and frameworks into a common protocol for machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    d2l-zh

    d2l-zh

    Chinese-language edition of Dive into Deep Learning

    d2l‑zh is the Chinese-language edition of Dive into Deep Learning, an interactive, open‑source deep learning textbook that combines code, math, and explanatory text. It features runnable Jupyter notebooks compatible with multiple frameworks (e.g., PyTorch, MXNet, TensorFlow), comprehensive theoretical analysis, and exercises. Widely adopted in over 70 countries and used by more than 500 universities for teaching deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Shennina

    Shennina

    Automating Host Exploitation with AI

    Shennina is an automated host exploitation framework. The mission of the project is to fully automate the scanning, vulnerability scanning/analysis, and exploitation using Artificial Intelligence. Shennina is integrated with Metasploit and Nmap for performing the attacks, as well as being integrated with an in-house Command-and-Control Server for exfiltrating data from compromised machines automatically. Shennina scans a set of input targets for available network services, uses its AI engine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    BCI

    BCI

    BCI: Breast Cancer Immunohistochemical Image Generation

    ...We have released the trained model on BCI and LLVIP datasets. We host a competition for breast cancer immunohistochemistry image generation on Grand Challenge. Project pix2pix provides a python script to generate pix2pix training data in the form of pairs of images {A,B}, where A and B are two different depictions of the same underlying scene, these can be pairs {HE, IHC}. Then we can learn to translate A(HE images) to B(IHC images). The evaluation of human epidermal growth factor receptor 2 (HER2) expression is essential to formulate a precise treatment for breast cancer. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    DeepCTR-Torch

    DeepCTR-Torch

    Easy-to-use,Modular and Extendible package of deep-learning models

    DeepCTR-Torch is an easy-to-use, Modular and Extendible package of deep-learning-based CTR models along with lots of core components layers that can be used to build your own custom model easily.It is compatible with PyTorch.You can use any complex model with model.fit() and model.predict(). With the great success of deep learning, DNN-based techniques have been widely used in CTR estimation tasks. The data in the CTR estimation task usually includes high sparse,high cardinality categorical...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Yellowbrick

    Yellowbrick

    Visual analysis and diagnostic tools to facilitate ML selection

    Yellowbrick extends the Scikit-Learn API to make model selection and hyperparameter tuning easier. Under the hood, it’s using Matplotlib. Yellowbrick is a suite of visual diagnostic tools called "Visualizers" that extend the scikit-learn API to allow human steering of the model selection process. In a nutshell, Yellowbrick combines scikit-learn with matplotlib in the best tradition of the scikit-learn documentation, but to produce visualizations for your machine learning workflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Emb-GAM

    Emb-GAM

    An interpretable and efficient predictor using pre-trained models

    Deep learning models have achieved impressive prediction performance but often sacrifice interpretability, a critical consideration in high-stakes domains such as healthcare or policymaking. In contrast, generalized additive models (GAMs) can maintain interpretability but often suffer from poor prediction performance due to their inability to effectively capture feature interactions. In this work, we aim to bridge this gap by using pre-trained neural language models to extract embeddings for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    handson-ml

    handson-ml

    Teaching you the fundamentals of Machine Learning in python

    handson-ml hosts the notebooks for the first edition of the same hands-on ML book, reflecting the tooling and idioms of its time while teaching durable concepts. It walks through supervised and unsupervised learning with scikit-learn, then introduces deep learning using the earlier TensorFlow 1 graph-execution style. The examples underscore fundamentals like bias-variance trade-offs, regularization, and proper validation, grounding learners before they move to deep nets. Even though the deep...
    Downloads: 0 This Week
    Last Update:
    See Project