Search Results for "learn python source codes" - Page 5

Showing 385 open source projects for "learn python source codes"

View related business solutions
  • Free CRM Software With Something for Everyone Icon
    Free CRM Software With Something for Everyone

    216,000+ customers in over 135 countries grow their businesses with HubSpot

    Think CRM software is just about contact management? Think again. HubSpot CRM has free tools for everyone on your team, and it’s 100% free. Here’s how our free CRM solution makes your job easier.
    Get free CRM
  • Payroll Services for Small Businesses | QuickBooks Icon
    Payroll Services for Small Businesses | QuickBooks

    Save 50% off for 3 months with QuickBooks Payroll when you Buy Now

    Easily pay your team and access powerful tools, employee benefits, and supportive experts with the #1 online payroll service provider. Manage payroll and access HR and employee services in one place. Pay your team automatically once your payroll setup is complete. We'll calculate, file, and pay your payroll taxes automatically.
    Learn More
  • 1
    Powerline Go

    Powerline Go

    A beautiful and useful low-latency prompt for your shell

    A Powerline-like prompt for Bash, ZSH, and Fish. All of the version control systems supported by powerline shell give you a quick look into the state of your repo. The current branch is displayed and changes background color when the branch is dirty. When the local branch differs from the remote, the difference in number of commits is shown along with ⇡ or ⇣ indicating whether a git push or pull is pending. powerline-go uses ANSI color codes, these should nowadays work everywhere, but you may...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    NVIDIA Federated Learning Application Runtime Environment NVIDIA FLARE is a domain-agnostic, open-source, extensible SDK that allows researchers and data scientists to adapt existing ML/DL workflows(PyTorch, TensorFlow, Scikit-learn, XGBoost etc.) to a federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration. NVIDIA FLARE is built on a componentized architecture that allows you to take federated learning...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    UMAP

    UMAP

    Uniform Manifold Approximation and Projection

    Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualization similarly to t-SNE, but also for general non-linear dimension reduction. It is possible to model the manifold with a fuzzy topological structure. The embedding is found by searching for a low-dimensional projection of the data that has the closest possible equivalent fuzzy topological structure. First of all UMAP is fast. It can handle large datasets and high dimensional...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Remarkable for Linux

    Remarkable for Linux

    The Markdown Editor for Linux

    With Live Preview you can see your changes as you make them. There is no need to export first to check your syntax. This is accompanied by synchronized scrolling. Remarkable has Github Flavoured Markdown. This has a simple, easy-to-learn syntax with features like checklists, highlighting, links, images and more. Remarkable allows you to export your files to PDF and HTML from within the app. The HTML code is even prettified and PDFs have a TOC. You can style your markdown documents however you...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Never Get Blocked Again | Enterprise Web Scraping Icon
    Never Get Blocked Again | Enterprise Web Scraping

    Enterprise-Grade Proxies • Built-in IP Rotation • 195 Countries • 20K+ Companies Trust Us

    Get unrestricted access to public web data with our ethically-sourced proxy network. Automated session management and advanced unblocking handle the hard parts. Scale from 1 to 1M requests with zero blocks. Built for developers with ready-to-use APIs, serverless functions, and complete documentation. Used by 20,000+ companies including Fortune 500s. SOC2 and GDPR compliant.
    Get Started
  • 5
    Mailu

    Mailu

    Insular email distribution - mail server as Docker images

    ..., block malicious attachments. Antispam, auto-learn, greylisting, DMARC and SPF, anti-spoofing. Freedom, all FOSS components, no tracker included.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Cleanlab

    Cleanlab

    The standard data-centric AI package for data quality and ML

    ... label issues and other data issues, so you can train reliable ML models. All features of cleanlab work with any dataset and any model. Yes, any model: PyTorch, Tensorflow, Keras, JAX, HuggingFace, OpenAI, XGBoost, scikit-learn, etc. If you use a sklearn-compatible classifier, all cleanlab methods work out-of-the-box.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    PyTorch/XLA

    PyTorch/XLA

    Enabling PyTorch on Google TPU

    PyTorch/XLA is a Python package that uses the XLA deep learning compiler to connect the PyTorch deep learning framework and Cloud TPUs. You can try it right now, for free, on a single Cloud TPU with Google Colab, and use it in production and on Cloud TPU Pods with Google Cloud. Take a look at one of our Colab notebooks to quickly try different PyTorch networks running on Cloud TPUs and learn how to use Cloud TPUs as PyTorch devices. We are also introducing new TPU VMs for more transparent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference workloads...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Save hundreds of developer hours with components built for SaaS applications. Icon
    Save hundreds of developer hours with components built for SaaS applications.

    The #1 Embedded Analytics Solution for SaaS Teams.

    Whether you want full self-service analytics or simpler multi-tenant security, Qrvey’s embeddable components and scalable data management remove the guess work.
    Try Developer Playground
  • 10
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    Datasets is a library for easily accessing and sharing datasets, and evaluation metrics for Natural Language Processing (NLP), computer vision, and audio tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Cookiecutter Data Science

    Cookiecutter Data Science

    Project structure for doing and sharing data science work

    A logical, reasonably standardized, but flexible project structure for doing and sharing data science work. When we think about data analysis, we often think just about the resulting reports, insights, or visualizations. While these end products are generally the main event, it's easy to focus on making the products look nice and ignore the quality of the code that generates them. Because these end products are created programmatically, code quality is still important! And we're not talking...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    tsfresh

    tsfresh

    Automatic extraction of relevant features from time series

    tsfresh is a python package. It automatically calculates a large number of time series characteristics, the so called features. tsfresh is used to to extract characteristics from time series. Without tsfresh, you would have to calculate all characteristics by hand. With tsfresh this process is automated and all your features can be calculated automatically. Further tsfresh is compatible with pythons pandas and scikit-learn APIs, two important packages for Data Science endeavours in python...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Tribuo

    Tribuo

    Tribuo - A Java machine learning library

    Tribuo* is a machine learning library written in Java. It provides tools for classification, regression, clustering, model development, and more. It provides a unified interface to many popular third-party ML libraries like xgboost and liblinear. With interfaces to native code, Tribuo also makes it possible to deploy models trained by Python libraries (e.g. scikit-learn, and pytorch) in a Java program. Tribuo is licensed under Apache 2.0. Remove the uncertainty around exactly which artifacts...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    acme.sh

    acme.sh

    A pure Unix shell script implementing ACME client protocol

    A pure Unix shell script implementing ACME client protocol. An ACME protocol client written purely in Shell (Unix shell) language. Full ACME protocol implementation. Support ECDSA certs. Support SAN and wildcard certs. Simple, powerful and very easy to use. You only need 3 minutes to learn it. Bash, dash and sh compatible. Purely written in Shell with no dependencies on python. Just one script to issue, renew and install your certificates automatically. Does not require root/sudoer access...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    DeepCTR-Torch

    DeepCTR-Torch

    Easy-to-use,Modular and Extendible package of deep-learning models

    ... features and some dense numerical features. Low-order Extractor learns feature interaction through product between vectors. Factorization-Machine and it’s variants are widely used to learn the low-order feature interaction. High-order Extractor learns feature combination through complex neural network functions like MLP, Cross Net, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    BCI

    BCI

    BCI: Breast Cancer Immunohistochemical Image Generation

    Breast Cancer Immunohistochemical Image Generation through Pyramid Pix2pix. We have released the trained model on BCI and LLVIP datasets. We host a competition for breast cancer immunohistochemistry image generation on Grand Challenge. Project pix2pix provides a python script to generate pix2pix training data in the form of pairs of images {A,B}, where A and B are two different depictions of the same underlying scene, these can be pairs {HE, IHC}. Then we can learn to translate A(HE images...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    resistor-codes

    The SMD resistor nomenclature

    The small python package to get the resistance of resistors based on three, four or EIA-96 system.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Emb-GAM

    Emb-GAM

    An interpretable and efficient predictor using pre-trained models

    ... for each input before learning a linear model in the embedding space. The final model (which we call Emb-GAM) is a transparent, linear function of its input features and feature interactions. Leveraging the language model allows Emb-GAM to learn far fewer linear coefficients, model larger interactions, and generalize well to novel inputs. Across a variety of natural-language-processing datasets, Emb-GAM achieves strong prediction performance without sacrificing interpretability.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no assumptions about...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    AnimeGAN

    AnimeGAN

    A simple PyTorch Implementation of Generative Adversarial Networks

    A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. The images are generated from a DCGAN model trained on 143,000 anime character faces for 100 epochs. Manipulating latent codes enables the transition from images in the first row to the last row. The images are not clean, some outliers can be observed, which degrades the quality of the generated images. Anime-style images of 126 tags are collected from danbooru.donmai.us using the crawler tool...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    Yellowbrick

    Yellowbrick

    Visual analysis and diagnostic tools to facilitate ML selection

    Yellowbrick extends the Scikit-Learn API to make model selection and hyperparameter tuning easier. Under the hood, it’s using Matplotlib. Yellowbrick is a suite of visual diagnostic tools called "Visualizers" that extend the scikit-learn API to allow human steering of the model selection process. In a nutshell, Yellowbrick combines scikit-learn with matplotlib in the best tradition of the scikit-learn documentation, but to produce visualizations for your machine learning workflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    Hello AI World is a great way to start using Jetson and experiencing the power of AI. In just a couple of hours, you can have a set of deep learning inference demos up and running for realtime image classification and object detection on your Jetson Developer Kit with JetPack SDK and NVIDIA TensorRT. The tutorial focuses on networks related to computer vision, and includes the use of live cameras. You’ll also get to code your own easy-to-follow recognition program in Python or C++, and train...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    SageMaker Scikit-Learn Extension

    SageMaker Scikit-Learn Extension

    A library of additional estimators and SageMaker tools based on scikit

    A library of additional estimators and SageMaker tools based on scikit-learn. This project contains standalone scikit-learn estimators and additional tools to support SageMaker Autopilot. Many of the additional estimators are based on existing scikit-learn estimators. SageMaker Scikit-Learn Extension is a Python module for machine learning built on top of scikit-learn. In order to use the I/O functionalies in the sagemaker_sklearn_extension.externals module, you will also need to install...
    Downloads: 0 This Week
    Last Update:
    See Project