Search Results for "deep learning with python" - Page 4

Showing 1633 open source projects for "deep learning with python"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    handson-ml3

    handson-ml3

    Fundamentals of Machine Learning and Deep Learning

    handson-ml3 contains the Jupyter notebooks and code for the third edition of the book Hands-On Machine Learning with Scikit-Learn, Keras & TensorFlow. It guides readers through modern machine learning and deep learning workflows using Python, with examples spanning data preparation, supervised and unsupervised learning, deep neural networks, RL, and production-ready model deployment. The third edition updates the content for TensorFlow 2 and Keras, introduces new chapters (for example on reinforcement learning or generative models), and offers best-practice code that reflects current ecosystems. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    AutoGluon enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, AutoGluon enables you to quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DeepPavlov

    DeepPavlov

    A library for deep learning end-to-end dialog systems and chatbots

    ...It has comprehensive and flexible tools that let developers and NLP researchers create production-ready conversational skills and complex multi-skill conversational assistants. Use BERT and other state-of-the-art deep learning models to solve classification, NER, Q&A and other NLP tasks. DeepPavlov Agent allows building industrial solutions with multi-skill integration via API services.
    Downloads: 1 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Learn More
  • 5
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    Raster Vision is an open source framework for Python developers building computer vision models on satellite, aerial, and other large imagery sets (including oblique drone imagery). There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training models, creating predictions, evaluating models, and bundling the model files and configuration for easy deployment. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    TorchDistill

    TorchDistill

    A coding-free framework built on PyTorch

    torchdistill (formerly kdkit) offers various state-of-the-art knowledge distillation methods and enables you to design (new) experiments simply by editing a declarative yaml config file instead of Python code. Even when you need to extract intermediate representations in teacher/student models, you will NOT need to reimplement the models, which often change the interface of the forward, but instead specify the module path(s) in the yaml file. In addition to knowledge distillation, this framework helps you design and perform general deep learning experiments (WITHOUT coding) for reproducible deep learning studies. i.e., it enables you to train models without teachers simply by excluding teacher entries from a declarative yaml config file.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    FLEXible

    FLEXible

    Federated Learning (FL) experiment simulation in Python

    FLEXible (Federated Learning Experiments) is a Python framework offering tools to simulate FL with deep learning. It includes built-in datasets (MNIST, CIFAR10, Shakespeare), supports TensorFlow/PyTorch, and has extensions for adversarial attacks, anomaly detection, and decision trees.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    Datasets is a library for easily accessing and sharing datasets, and evaluation metrics for Natural Language Processing (NLP), computer vision, and audio tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep integration with the Hugging Face Hub, allowing you to easily load and share a dataset with the wider NLP community. There are currently over 2658 datasets, and more than 34 metrics available. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Recommenders

    Recommenders

    Best practices on recommendation systems

    The Recommenders repository provides examples and best practices for building recommendation systems, provided as Jupyter notebooks. The module reco_utils contains functions to simplify common tasks used when developing and evaluating recommender systems. Several utilities are provided in reco_utils to support common tasks such as loading datasets in the format expected by different algorithms, evaluating model outputs, and splitting training/test data. Implementations of several...
    Downloads: 0 This Week
    Last Update:
    See Project
  • D&B Hoovers is Your Sales Accelerator Icon
    D&B Hoovers is Your Sales Accelerator

    For sales teams that want to accelerate B2B sales with better data

    Speed up sales prospecting with the rich audience targeting capabilities of D&B Hoovers so you can spend more sales time closing.
    Learn More
  • 10
    Audiomentations

    Audiomentations

    A Python library for audio data augmentation

    A Python library for audio data augmentation. Inspired by albumentations. Useful for deep learning. Runs on CPU. Supports mono audio and multichannel audio. Can be integrated in training pipelines in e.g. Tensorflow/Keras or Pytorch. Has helped people get world-class results in Kaggle competitions. Is used by companies making next-generation audio products.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Ludwig

    Ludwig

    A codeless platform to train and test deep learning models

    Ludwig is a toolbox built on top of TensorFlow that allows to train and test deep learning models without the need to write code. All you need to provide is a CSV file containing your data, a list of columns to use as inputs, and a list of columns to use as outputs, Ludwig will do the rest. Simple commands can be used to train models both locally and in a distributed way, and to use them to predict on new data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Burn

    Burn

    Burn is a new comprehensive dynamic Deep Learning Framework

    Burn is a new comprehensive dynamic Deep Learning Framework built using Rust with extreme flexibility, compute efficiency and portability as its primary goals. Burn emphasizes performance, flexibility, and portability for both training and inference. Developed in Rust, it is designed to empower machine learning engineers and researchers across industry and academia.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    oneDNN

    oneDNN

    oneAPI Deep Neural Network Library (oneDNN)

    Deep learning practitioners should use one of the applications enabled with oneDNN.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Torch-TensorRT

    Torch-TensorRT

    PyTorch/TorchScript/FX compiler for NVIDIA GPUs using TensorRT

    Torch-TensorRT is a compiler for PyTorch/TorchScript, targeting NVIDIA GPUs via NVIDIA’s TensorRT Deep Learning Optimizer and Runtime. Unlike PyTorch’s Just-In-Time (JIT) compiler, Torch-TensorRT is an Ahead-of-Time (AOT) compiler, meaning that before you deploy your TorchScript code, you go through an explicit compile step to convert a standard TorchScript program into a module targeting a TensorRT engine. Torch-TensorRT operates as a PyTorch extension and compiles modules that integrate into the JIT runtime seamlessly. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 17
    DLRM

    DLRM

    An implementation of a deep learning recommendation model (DLRM)

    DLRM (Deep Learning Recommendation Model) is Meta’s open-source reference implementation for large-scale recommendation systems built to handle extremely high-dimensional sparse features and embedding tables. The architecture combines dense (MLP) and sparse (embedding) branches, then interacts features via dot product or feature interactions before passing through further dense layers to predict click-through, ranking scores, or conversion probabilities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Transformer Engine

    Transformer Engine

    A library for accelerating Transformer models on NVIDIA GPUs

    ...TE provides a collection of highly optimized building blocks for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your framework-specific code. TE also includes a framework-agnostic C++ API that can be integrated with other deep-learning libraries to enable FP8 support for Transformers. As the number of parameters in Transformer models continues to grow, training and inference for architectures such as BERT, GPT, and T5 become very memory and compute-intensive. Most deep learning frameworks train with FP32 by default. This is not essential, however, to achieve full accuracy for many deep learning models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    PyTorch/XLA

    PyTorch/XLA

    Enabling PyTorch on Google TPU

    PyTorch/XLA is a Python package that uses the XLA deep learning compiler to connect the PyTorch deep learning framework and Cloud TPUs. You can try it right now, for free, on a single Cloud TPU with Google Colab, and use it in production and on Cloud TPU Pods with Google Cloud. Take a look at one of our Colab notebooks to quickly try different PyTorch networks running on Cloud TPUs and learn how to use Cloud TPUs as PyTorch devices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Techniques

    Techniques

    Techniques for deep learning with satellite & aerial imagery

    This repository is a comprehensive, curated collection of deep learning techniques and best practices specifically applied to satellite and aerial imagery. It covers everything from preprocessing and annotation to model architectures and open datasets. The guide includes code snippets, links to research papers, and hands-on tools, making it valuable for researchers, engineers, and enthusiasts working in remote sensing and geospatial AI.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Tensorforce

    Tensorforce

    A TensorFlow library for applied reinforcement learning

    Tensorforce is an open-source deep reinforcement learning framework built on TensorFlow, emphasizing modularized design and straightforward usability for applied research and practice.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Computer Vision Annotation Tool (CVAT)

    Computer Vision Annotation Tool (CVAT)

    Interactive video and image annotation tool for computer vision

    Computer Vision Annotation Tool (CVAT) is a free and open source, interactive online tool for annotating videos and images for Computer Vision algorithms. It offers many powerful features, including automatic annotation using deep learning models, interpolation of bounding boxes between key frames, LDAP and more. It is being used by its own professional data annotation team to annotate millions of objects with different properties. The UX and UI were also specially developed by the team for computer vision tasks. CVAT supports several annotation formats. ...
    Downloads: 42 This Week
    Last Update:
    See Project
  • 23
    ONNX Runtime

    ONNX Runtime

    ONNX Runtime: cross-platform, high performance ML inferencing

    ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences and lower costs, supporting models from deep learning frameworks such as PyTorch and TensorFlow/Keras as well as classical machine learning libraries such as scikit-learn, LightGBM, XGBoost, etc. ONNX Runtime is compatible with different hardware, drivers, and operating systems, and provides optimal performance by leveraging hardware accelerators where applicable alongside graph optimizations and transforms. ...
    Downloads: 33 This Week
    Last Update:
    See Project
  • 24
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    The core idea is to remove the error sources and difficulties of Deep Learning applications by providing a safe haven of commoditized practices, all available as a single core. While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    ONNX

    ONNX

    Open standard for machine learning interoperability

    ONNX is an open format built to represent machine learning models. ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves.
    Downloads: 3 This Week
    Last Update:
    See Project