Showing 164 open source projects for "transformers"

View related business solutions
  • AI-powered service management for IT and enterprise teams Icon
    AI-powered service management for IT and enterprise teams

    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity. Maximize operational efficiency with refreshingly simple, AI-powered Freshservice.
    Try it Free
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 1
    DeepSeed

    DeepSeed

    Deep learning optimization library making distributed training easy

    ...With just a single GPU, ZeRO-Offload of DeepSpeed can train models with over 10B parameters, 10x bigger than the state of arts, democratizing multi-billion-parameter model training such that many deep learning scientists can explore bigger and better models. Sparse attention of DeepSpeed powers an order-of-magnitude longer input sequence and obtains up to 6x faster execution comparing with dense transformers.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Qwen2.5-Math

    Qwen2.5-Math

    A series of math-specific large language models of our Qwen2 series

    Qwen2.5-Math is a series of mathematics-specialized large language models in the Qwen2 family, released by Alibaba’s QwenLM. It includes base models (1.5B / 7B / 72B parameters), instruction-tuned versions, and a reward model (RM) to improve alignment. Unlike its predecessor Qwen2-Math, Qwen2.5-Math supports both Chain-of-Thought (CoT) reasoning and Tool-Integrated Reasoning (TIR) for solving math problems, and works in both Chinese and English. It is optimized for solving mathematical...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    ...Different machine learning frameworks have different strengths. Flower can be used with any machine learning framework, for example, PyTorch, TensorFlow, Hugging Face Transformers, PyTorch Lightning, scikit-learn, JAX, TFLite, MONAI, fastai, MLX, XGBoost, Pandas for federated analytics, or even raw NumPy for users who enjoy computing gradients by hand.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Giskard

    Giskard

    Collaborative & Open-Source Quality Assurance for all AI models

    ...Giskard automatically generates relevant tests based on the vulnerabilities detected by the scan. You can easily customize the tests depending on your use case by defining domain-specific data slicers and transformers as fixtures of your test suites.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    IQuest-Coder-V1 Model Family

    IQuest-Coder-V1 Model Family

    New family of code large language models (LLMs)

    IQuest-Coder-V1 is a cutting-edge family of open-source large language models specifically engineered for code generation, deep code understanding, and autonomous software engineering tasks. These models range from tens of billions to smaller footprints and are trained on a novel code-flow multi-stage paradigm that captures how real software evolves over time — not just static code snapshots — giving them a deeper semantic understanding of programming logic. They support native long contexts...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    TorchDistill

    TorchDistill

    A coding-free framework built on PyTorch

    torchdistill (formerly kdkit) offers various state-of-the-art knowledge distillation methods and enables you to design (new) experiments simply by editing a declarative yaml config file instead of Python code. Even when you need to extract intermediate representations in teacher/student models, you will NOT need to reimplement the models, which often change the interface of the forward, but instead specify the module path(s) in the yaml file. In addition to knowledge distillation, this...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    flair

    flair

    A very simple framework for state-of-the-art NLP

    ...A text embedding library. Flair has simple interfaces that allow you to use and combine different word and document embeddings, including our proposed Flair embeddings and various transformers. A PyTorch NLP framework. Our framework builds directly on PyTorch, making it easy to train your own models and experiment with new approaches using Flair embeddings and classes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    txtai

    txtai

    Build AI-powered semantic search applications

    txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications. Traditional search systems use keywords to find data. Semantic search applications have an understanding of natural language and identify results that have the same meaning, not necessarily the same keywords. Backed by state-of-the-art machine learning models, data is transformed into vector representations for search (also known as embeddings). Innovation is happening at a rapid...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    GLM-4

    GLM-4

    GLM-4 series: Open Multilingual Multimodal Chat LMs

    GLM-4 is a family of open models from ZhipuAI that spans base, chat, and reasoning variants at both 32B and 9B scales, with long-context support and practical local-deployment options. The GLM-4-32B-0414 models are trained on ~15T high-quality data (including substantial synthetic reasoning data), then post-trained with preference alignment, rejection sampling, and reinforcement learning to improve instruction following, coding, function calling, and agent-style behaviors. The...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 11
    Deep-Learning-Interview-Book

    Deep-Learning-Interview-Book

    Interview guide for machine learning, mathematics, and deep learning

    Deep-Learning-Interview-Book collects structured notes, Q&A, and concept summaries tailored to deep-learning interviews, turning scattered study into a coherent playbook. It spans the core math (linear algebra, probability, optimization) and the practitioner topics candidates actually face, like CNNs, RNNs/Transformers, attention, regularization, and training tricks. Explanations emphasize intuition first, then key formulas and common pitfalls, so you can reason through unseen questions rather than memorize trivia. Many entries connect theory to implementation details, including how choices in activation, initialization, or normalization affect convergence and stability. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Deep Learning Models

    Deep Learning Models

    A collection of various deep learning architectures, models, and tips

    ...The code favors readability and pedagogy: components are organized so you can trace data flow through layers, losses, optimizers, and evaluation. Examples span fundamental architectures—MLPs, CNNs, RNN/Transformers—and practical tasks like image classification or text modeling. Reproducible training scripts and configuration files make it straightforward to rerun experiments or adapt them to your own datasets. The repo often pairs implementations with notes on design choices and trade-offs, turning it into both a toolbox and a learning resource. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    LoggingExtras.jl

    LoggingExtras.jl

    Composable Loggers for the Julia Logging StdLib

    LoggingExtras allows routing logged information to different places when constructing complicated "log plumbing" systems. Built upon the concept of simple parts composed together, subtyping AbstractLogger provides a powerful and flexible definition for your logging system without a need to define any custom loggers. When we talk about composability, the composition of any set of Loggers is itself a Logger, and LoggingExtras is a composable logging system.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Tokenizers

    Tokenizers

    Fast State-of-the-Art Tokenizers optimized for Research and Production

    Fast State-of-the-art tokenizers, optimized for both research and production. Tokenizers provides an implementation of today’s most used tokenizers, with a focus on performance and versatility. These tokenizers are also used in Transformers. Train new vocabularies and tokenize, using today’s most used tokenizers. Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server’s CPU. Easy to use, but also extremely versatile. Designed for both research and production. Full alignment tracking. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Laravel Fractal

    Laravel Fractal

    An easy to use Fractal wrapper built for Laravel and Lumen

    ...Imagine you want to add some stats to the metadata of your request, you can do so without cluttering your code. You can run the make:transformer command to quickly generate a dummy transformer. By default it will be stored in the app\Transformers directory.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    ESPnet

    ESPnet

    End-to-end speech processing toolkit

    ESPnet is a comprehensive end-to-end speech processing toolkit covering a wide spectrum of tasks, including automatic speech recognition (ASR), text-to-speech (TTS), speech translation (ST), speech enhancement, speaker diarization, and spoken language understanding. It uses PyTorch as its deep learning engine and adopts a Kaldi-style data processing pipeline for features, data formats, and experimental recipes. This combination allows researchers to leverage modern neural architectures while...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    Perception Models

    Perception Models

    State-of-the-art Image & Video CLIP, Multimodal Large Language Models

    Perception Models is a state-of-the-art framework developed by Facebook Research for advanced image and video perception tasks. It introduces two primary components: the Perception Encoder (PE) for visual feature extraction and the Perception Language Model (PLM) for multimodal decoding and reasoning. The PE module is a family of vision encoders designed to excel in image and video understanding, surpassing models like SigLIP2, InternVideo2, and DINOv2 across multiple benchmarks. Meanwhile,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    RxDart

    RxDart

    The Reactive Extensions for Dart

    ...The library aims to stay idiomatic with Dart Streams while giving developers the ergonomic power long associated with the ReactiveX family. In practice, it encourages clear separation between data producers, transformers, and consumers.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    SentenceTransformers

    SentenceTransformers

    Multilingual sentence & image embeddings with BERT

    ...These embeddings can then be compared e.g. with cosine-similarity to find sentences with a similar meaning. This can be useful for semantic textual similar, semantic search, or paraphrase mining. The framework is based on PyTorch and Transformers and offers a large collection of pre-trained models tuned for various tasks. Further, it is easy to fine-tune your own models. Our models are evaluated extensively and achieve state-of-the-art performance on various tasks. Further, the code is tuned to provide the highest possible speed.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    xFormers

    xFormers

    Hackable and optimized Transformers building blocks

    xformers is a modular, performance-oriented library of transformer building blocks, designed to allow researchers and engineers to compose, experiment, and optimize transformer architectures more flexibly than monolithic frameworks. It abstracts components like attention layers, feedforward modules, normalization, and positional encoding, so you can mix and match or swap optimized kernels easily. One of its key goals is efficient attention: it supports dense, sparse, low-rank, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Argilla

    Argilla

    The open-source data curation platform for LLMs

    ...This feature uses vector search combined with traditional search (keyword and filter based). Argilla is free, open-source, and 100% compatible with major NLP libraries (Hugging Face transformers, spaCy, Stanford Stanza, Flair, etc.). In fact, you can use and combine your preferred libraries without implementing any specific interface. Most annotation tools treat data collection as a one-off activity at the beginning of each project. In real-world projects, data collection is a key activity of the iterative process of ML model development. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    httpexpect

    httpexpect

    End-to-end HTTP and REST API testing for Go

    ...URL query parameters (encoding using go-querystring package). Headers, cookies, payload: JSON, urlencoded or multipart forms (encoding using form package), plain text. Custom reusable request builders and request transformers. Type-specific assertions, supported types: object, array, string, number, boolean, null, datetime. Regular expressions. Simple JSON queries (using subset of JSONPath), provided by jsonpath package. JSON Schema validation, provided by gojsonschema package.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Recurrent Interface Network (RIN)

    Recurrent Interface Network (RIN)

    Implementation of Recurrent Interface Network (RIN)

    Implementation of Recurrent Interface Network (RIN), for highly efficient generation of images and video without cascading networks, in Pytorch. The author unawaredly reinvented the induced set-attention block from the set transformers paper. They also combine this with the self-conditioning technique from the Bit Diffusion paper, specifically for the latents. The last ingredient seems to be a new noise function based around the sigmoid, which the author claims is better than cosine scheduler for larger images. The big surprise is that the generations can reach this level of fidelity. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Mergo

    Mergo

    Mergo: merging Go structs and maps since 2013

    ...Also a lovely comune (municipality) in the Province of Ancona in the Italian region of Marche. Keep in mind that in 0.3.2, Mergo changed Merge()and Map() signatures to support transformers. I added an optional/variadic argument so that it won't break the existing code. You can only merge same-type structs with exported fields initialized as zero value of their type and same-types maps. Mergo won't merge unexported (private) fields but will do recursively any exported one. It won't merge empty structs value as they are zero values too.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    VoxCPM

    VoxCPM

    TTS for Context-Aware Speech Generation and True-to-Life Voice Cloning

    ...Instead of converting speech into discrete tokens, it uses an end-to-end diffusion-autoregressive architecture built on the MiniCPM-4 backbone, combining hierarchical language modeling, finite scalar quantization (FSQ), and local Diffusion Transformers. This design helps decouple semantic and acoustic information while preserving fine-grained prosody, leading to more stable and expressive generation than many discrete-token systems. Trained on a large 1.8-million-hour bilingual corpus, VoxCPM can infer appropriate speaking style from context, dynamically adjusting intonation, rhythm, and emotional tone. ...
    Downloads: 2 This Week
    Last Update:
    See Project