Search Results for "machine learning platform" - Page 10

Showing 2121 open source projects for "machine learning platform"

View related business solutions
  • Our Free Plans just got better! | Auth0 by Okta Icon
    Our Free Plans just got better! | Auth0 by Okta

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your secuirty. Auth0 now, thank yourself later.
    Try free now
  • Save hundreds of developer hours with components built for SaaS applications. Icon
    Save hundreds of developer hours with components built for SaaS applications.

    The #1 Embedded Analytics Solution for SaaS Teams.

    Whether you want full self-service analytics or simpler multi-tenant security, Qrvey’s embeddable components and scalable data management remove the guess work.
    Try Developer Playground
  • 1
    doccano

    doccano

    Open source annotation tool for machine learning practitioners

    doccano is an open-source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequence-to-sequence tasks. So, you can create labeled data for sentiment analysis, named entity recognition, text summarization and so on. Just create a project, upload data and start annotating. You can build a dataset in hours.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    FlubuCore

    FlubuCore

    A cross platform build and deployment automation system

    "FlubuCore - Fluent Builder Core" is a cross-platform build and deployment automation system. You can define your build and deployment scripts in C# using an intuitive fluent interface. This gives you code completion, IntelliSense, debugging, FlubuCore custom analyzers, and native access to the whole .NET ecosystem inside of your scripts. FlubuCore offers a .net (core) console application that uses power of roslyn to compile and execute scripts. Intuitive and easy to learn. C#, fluent interface...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference workloads...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    PyCaret

    PyCaret

    An open-source, low-code machine learning library in Python

    PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows. It is an end-to-end machine learning and model management tool that speeds up the experiment cycle exponentially and makes you more productive. In comparison with the other open-source machine learning libraries, PyCaret is an alternate low-code library that can be used to replace hundreds of lines of code with few lines only. This makes experiments exponentially fast and efficient...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Bright Data - All in One Platform for Proxies and Web Scraping Icon
    Bright Data - All in One Platform for Proxies and Web Scraping

    Say goodbye to blocks, restrictions, and CAPTCHAs

    Bright Data offers the highest quality proxies with automated session management, IP rotation, and advanced web unlocking technology. Enjoy reliable, fast performance with easy integration, a user-friendly dashboard, and enterprise-grade scaling. Powered by ethically-sourced residential IPs for seamless web scraping.
    Get Started
  • 5
    TPOT

    TPOT

    A Python Automated Machine Learning tool that optimizes ML

    Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming. TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    AtomAI

    AtomAI

    Deep and Machine Learning for Microscopy

    AtomAI is a Pytorch-based package for deep and machine-learning analysis of microscopy data that doesn't require any advanced knowledge of Python or machine learning. The intended audience is domain scientists with a basic understanding of how to use NumPy and Matplotlib. It was developed by Maxim Ziatdinov at Oak Ridge National Lab. The purpose of the AtomAI is to provide an environment that bridges the instrument-specific libraries and general physical analysis by enabling the seamless...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    BetaML.jl

    BetaML.jl

    Beta Machine Learning Toolkit

    The Beta Machine Learning Toolkit is a package including many algorithms and utilities to implement machine learning workflows in Julia, Python, R and any other language with a Julia binding. All models are implemented entirely in Julia and are hosted in the repository itself (i.e. they are not wrapper to third-party models). If your favorite option or model is missing, you can try to implement it yourself and open a pull request to share it (see the section Contribute below) or request its...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Compute Library

    Compute Library

    The Compute Library is a set of computer vision and machine learning

    The Compute Library is a set of computer vision and machine learning functions optimized for both Arm CPUs and GPUs using SIMD technologies. The library provides superior performance to other open-source alternatives and immediate support for new Arm® technologies e.g. SVE2.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    JDF.jl

    JDF.jl

    Julia DataFrames serialization format

    JDF is a DataFrames serialization format with the following goals, fast save and load times, compressed storage on disk, enabled disk-based data manipulation (not yet achieved), and support for machine learning workloads, e.g. mini-batch, sampling (not yet achieved). JDF stores a DataFrame in a folder with each column stored as a separate file. There is also a metadata.jls file that stores metadata about the original DataFrame. Collectively, the column files, the metadata file, and the folder...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Secure remote access solution to your private network, in the cloud or on-prem. Icon
    Secure remote access solution to your private network, in the cloud or on-prem.

    Deliver secure remote access with OpenVPN.

    OpenVPN is here to bring simple, flexible, and cost-effective secure remote access to companies of all sizes, regardless of where their resources are located.
    Get started — no credit card required.
  • 10
    PySR

    PySR

    High-Performance Symbolic Regression in Python and Julia

    PySR is an open-source tool for Symbolic Regression: a machine learning task where the goal is to find an interpretable symbolic expression that optimizes some objective. Over a period of several years, PySR has been engineered from the ground up to be (1) as high-performance as possible, (2) as configurable as possible, and (3) easy to use. PySR is developed alongside the Julia library SymbolicRegression.jl, which forms the powerful search engine of PySR. The details of these algorithms...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    CleanVision

    CleanVision

    Automatically find issues in image datasets

    CleanVision automatically detects potential issues in image datasets like images that are: blurry, under/over-exposed, (near) duplicates, etc. This data-centric AI package is a quick first step for any computer vision project to find problems in the dataset, which you want to address before applying machine learning. CleanVision is super simple -- run the same couple lines of Python code to audit any image dataset! The quality of machine learning models hinges on the quality of the data used...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    ACHE Focused Crawler

    ACHE Focused Crawler

    ACHE is a web crawler for domain-specific search

    ACHE is a focused web crawler. It collects web pages that satisfy some specific criteria, e.g., pages that belong to a given domain or that contain a user-specified pattern. ACHE differs from generic crawlers in sense that it uses page classifiers to distinguish between relevant and irrelevant pages in a given domain. A page classifier can be defined as a simple regular expression (e.g., that matches every page that contains a specific word) or a machine-learning-based classification model...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Tokenizers

    Tokenizers

    Fast State-of-the-Art Tokenizers optimized for Research and Production

    Fast State-of-the-art tokenizers, optimized for both research and production. Tokenizers provides an implementation of today’s most used tokenizers, with a focus on performance and versatility. These tokenizers are also used in Transformers. Train new vocabularies and tokenize, using today’s most used tokenizers. Extremely fast (both training and tokenization), thanks to the Rust implementation. Takes less than 20 seconds to tokenize a GB of text on a server’s CPU. Easy to use, but also...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    OpenCLIP

    OpenCLIP

    An open source implementation of CLIP

    The goal of this repository is to enable training models with contrastive image-text supervision and to investigate their properties such as robustness to distribution shift. Our starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset. Specifically, a ResNet-50 model trained with our codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet. OpenAI's CLIP model reaches 31.3% when...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    smclarify

    smclarify

    Fairness aware machine learning. Bias detection and mitigation

    Fairness Aware Machine Learning. Bias detection and mitigation for datasets and models. A facet is column or feature that will be used to measure bias against. A facet can have value(s) that designates that sample as "sensitive". Bias detection and mitigation for datasets and models. The label is a column or feature which is the target for training a machine learning model. The label can have value(s) that designates that sample as having a "positive" outcome. A bias measure is a function...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    PumpkinBook

    PumpkinBook

    Machine Learning formula derivation and analysis

    All the contents of the Pumpkin Book are expressed with the content of the Mr. Zhou Zhihua's "Machine Learning" Watermelon Book as the pre-knowledge, so the best way to use the Pumpkin Book is to use the Watermelon Book as the main line. Please refer to it when you encounter a formula that you cannot derive or cannot understand. We strive to explain and derive each formula from the perspective of undergraduate mathematics. Therefore, we usually give out the mathematics knowledge of the super...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Karate Club

    Karate Club

    An API Oriented Open-source Python Framework for Unsupervised Learning

    Karate Club is an unsupervised machine learning extension library for NetworkX. Karate Club consists of state-of-the-art methods to do unsupervised learning on graph-structured data. To put it simply it is a Swiss Army knife for small-scale graph mining research. First, it provides network embedding techniques at the node and graph level. Second, it includes a variety of overlapping and non-overlapping community detection methods. Implemented methods cover a wide range of network science...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18

    .NET Core Home

    Home repository for .NET Core

    This is the dotnet/core repository and is a good starting point for .NET Core, an open source general-purpose development framework for building cross-platform apps. .NET Core lets you create apps for Windows, macOS or Linux, as well as ARM64 processors using various programming languages. It provides frameworks and APIs for cloud, client UI, IoT, and machine learning. The latest major release (as of this writing) is .NET Core 3.1. You must be on the latest patch release in order to get...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    auto-sklearn

    auto-sklearn

    Automated machine learning with scikit-learn

    auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. auto-sklearn frees a machine learning user from algorithm selection and hyperparameter tuning. It leverages recent advantages in Bayesian optimization, meta-learning and ensemble construction. Auto-sklearn 2.0 includes latest research on automatically configuring the AutoML system itself and contains a multitude of improvements which speed up the fitting the AutoML system. auto-sklearn...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    NuPIC

    NuPIC

    Numenta platform for intelligent computing

    The Numenta Platform for Intelligent Computing (NuPIC) is a machine intelligence platform that implements the HTM learning algorithms. HTM is a detailed computational theory of the neocortex. At the core of HTM are time-based continuous learning algorithms that store and recall spatial and temporal patterns. NuPIC is suited to a variety of problems, particularly anomaly detection and prediction of streaming data sources. For more information, see numenta.org or the NuPIC Forum. If you want...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    KotlinDL

    KotlinDL

    High-level Deep Learning Framework written in Kotlin

    KotlinDL is a high-level Deep Learning API written in Kotlin and inspired by Keras. Under the hood, it uses TensorFlow Java API and ONNX Runtime API for Java. KotlinDL offers simple APIs for training deep learning models from scratch, importing existing Keras and ONNX models for inference, and leveraging transfer learning for tailoring existing pre-trained models to your tasks. This project aims to make Deep Learning easier for JVM and Android developers and simplify deploying deep learning...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    dtreeviz

    dtreeviz

    Python library for decision tree visualization & model interpretation

    A python library for decision tree visualization and model interpretation. Decision trees are the fundamental building block of gradient boosting machines and Random Forests(tm), probably the two most popular machine learning models for structured data. Visualizing decision trees is a tremendous aid when learning how these models work and when interpreting models. The visualizations are inspired by an educational animation by R2D3; A visual introduction to machine learning. Please see How...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    cuML

    cuML

    RAPIDS Machine Learning Library

    cuML is a suite of libraries that implement machine learning algorithms and mathematical primitives functions that share compatible APIs with other RAPIDS projects. cuML enables data scientists, researchers, and software engineers to run traditional tabular ML tasks on GPUs without going into the details of CUDA programming. In most cases, cuML's Python API matches the API from scikit-learn. For large datasets, these GPU-based implementations can complete 10-50x faster than their CPU...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    Serve machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. Once you have a trained model, you can include it in a Docker container that runs your inference code. A container provides an effectively isolated environment, ensuring a consistent runtime regardless of where...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    CML

    CML

    Continuous Machine Learning | CI/CD for ML

    Continuous Machine Learning (CML) is an open-source CLI tool for implementing continuous integration & delivery (CI/CD) with a focus on MLOps. Use it to automate development workflows, including machine provisioning, model training and evaluation, comparing ML experiments across project history, and monitoring changing datasets. CML can help train and evaluate models, and then generate a visual report with results and metrics, automatically on every pull request.
    Downloads: 0 This Week
    Last Update:
    See Project