Learn how easy it is to sync an existing GitHub or Google Code repo to a SourceForge project! See Demo

Close

[723a2f]: README.CV Maximize Restore History

Download this file

README.CV    1733 lines (1305 with data), 43.6 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
README.CV -- Condition Variables
--------------------------------

The original implementation of condition variables in
pthreads-win32 was based on a discussion paper:

"Strategies for Implementing POSIX Condition Variables
on Win32": http://www.cs.wustl.edu/~schmidt/win32-cv-1.html

The changes suggested below were made on Feb 6 2001. This
file is included in the package for the benefit of anyone
interested in understanding the pthreads-win32 implementation
of condition variables and the (sometimes subtle) issues that
it attempts to resolve.

Thanks go to the individuals whose names appear throughout
the following text.

Ross Johnson

--------------------------------------------------------------------

fyi.. (more detailed problem description/demos + possible fix/patch)

regards,
alexander.


Alexander Terekhov
31.01.2001 17:43

To:   ace-bugs@cs.wustl.edu
cc:
From: Alexander Terekhov/Germany/IBM@IBMDE
Subject:  Implementation of POSIX CVs: spur.wakeups/lost
      signals/deadlocks/unfairness



    ACE VERSION:

        5.1.12 (pthread-win32 snapshot 2000-12-29)

    HOST MACHINE and OPERATING SYSTEM:

        IBM IntelliStation Z Pro, 2 x XEON 1GHz, Win2K

    TARGET MACHINE and OPERATING SYSTEM, if different from HOST:
    COMPILER NAME AND VERSION (AND PATCHLEVEL):

        Microsoft Visual C++ 6.0

    AREA/CLASS/EXAMPLE AFFECTED:

        Implementation of POSIX condition variables - OS.cpp/.h

    DOES THE PROBLEM AFFECT:

        EXECUTION? YES!

    SYNOPSIS:

        a) spurious wakeups (minor problem)
        b) lost signals
        c) broadcast deadlock
        d) unfairness (minor problem)

    DESCRIPTION:

        Please see attached copy of discussion thread
        from comp.programming.threads for more details on
        some reported problems. (i've also posted a "fyi"
        message to ace-users a week or two ago but
        unfortunately did not get any response so far).

        It seems that current implementation suffers from
        two essential problems:

        1) cond.waiters_count does not accurately reflect
           number of waiters blocked on semaphore - w/o
           proper synchronisation that could result (in the
           time window when counter is not accurate)
           in spurious wakeups organised by subsequent
           _signals  and _broadcasts.

        2) Always having (with no e.g. copy_and_clear/..)
           the same queue in use (semaphore+counter)
           neither signal nor broadcast provide 'atomic'
           behaviour with respect to other threads/subsequent
           calls to signal/broadcast/wait.

        Each problem and combination of both could produce
        various nasty things:

        a) spurious wakeups (minor problem)

             it is possible that waiter(s) which was already
             unblocked even so is still counted as blocked
             waiter. signal and broadcast will release
             semaphore which will produce a spurious wakeup
             for a 'real' waiter coming later.

        b) lost signals

             signalling thread ends up consuming its own
             signal. please see demo/discussion below.

        c) broadcast deadlock

             last_waiter processing code does not correctly
             handle the case with multiple threads
             waiting for the end of broadcast.
             please see demo/discussion below.

        d) unfairness (minor problem)

             without SignalObjectAndWait some waiter(s)
             may end up consuming broadcasted signals
             multiple times (spurious wakeups) because waiter
             thread(s) can be preempted before they call
             semaphore wait (but after count++ and mtx.unlock).

    REPEAT BY:

        See below... run problem demos programs (tennis.cpp and
        tennisb.cpp) number of times concurrently (on multiprocessor)
        and in multiple sessions or just add a couple of "Sleep"s
        as described in the attached copy of discussion thread
        from comp.programming.threads

    SAMPLE FIX/WORKAROUND:

        See attached patch to pthread-win32.. well, I can not
        claim that it is completely bug free but at least my
        test and tests provided by pthreads-win32 seem to work.
        Perhaps that will help.

        regards,
        alexander.


>> Forum: comp.programming.threads
>> Thread: pthread_cond_* implementation questions
.
.
.
David Schwartz <davids@webmaster.com> wrote:

> terekhov@my-deja.com wrote:
>
>> BTW, could you please also share your view on other perceived
>> "problems" such as nested broadcast deadlock, spurious wakeups
>> and (the latest one) lost signals??
>
>I'm not sure what you mean. The standard allows an implementation
>to do almost whatever it likes. In fact, you could implement
>pthread_cond_wait by releasing the mutex, sleeping a random
>amount of time, and then reacquiring the mutex. Of course,
>this would be a pretty poor implementation, but any code that
>didn't work under that implementation wouldn't be strictly
>compliant.

The implementation you suggested is indeed correct
one (yes, now I see it :). However it requires from
signal/broadcast nothing more than to "{ return 0; }"
That is not the case for pthread-win32 and ACE
implementations. I do think that these implementations
(basically the same implementation) have some serious
problems with wait/signal/broadcast calls. I am looking
for help to clarify whether these problems are real
or not. I think that I can demonstrate what I mean
using one or two small sample programs.
.
.
.
==========
tennis.cpp
==========

#include "ace/Synch.h"
#include "ace/Thread.h"

enum GAME_STATE {

  START_GAME,
  PLAYER_A,     // Player A playes the ball
  PLAYER_B,     // Player B playes the ball
  GAME_OVER,
  ONE_PLAYER_GONE,
  BOTH_PLAYERS_GONE

};

enum GAME_STATE             eGameState;
ACE_Mutex*                  pmtxGameStateLock;
ACE_Condition< ACE_Mutex >* pcndGameStateChange;

void*
  playerA(
    void* pParm
  )
{

  // For access to game state variable
  pmtxGameStateLock->acquire();

  // Play loop
  while ( eGameState < GAME_OVER ) {

    // Play the ball
    cout << endl << "PLAYER-A" << endl;

    // Now its PLAYER-B's turn
    eGameState = PLAYER_B;

    // Signal to PLAYER-B that now it is his turn
    pcndGameStateChange->signal();

    // Wait until PLAYER-B finishes playing the ball
    do {

      pcndGameStateChange->wait();

      if ( PLAYER_B == eGameState )
        cout << endl << "----PLAYER-A: SPURIOUS WAKEUP!!!" << endl;

    } while ( PLAYER_B == eGameState );

  }

  // PLAYER-A gone
  eGameState = (GAME_STATE)(eGameState+1);
  cout << endl << "PLAYER-A GONE" << endl;

  // No more access to state variable needed
  pmtxGameStateLock->release();

  // Signal PLAYER-A gone event
  pcndGameStateChange->broadcast();

  return 0;

}

void*
  playerB(
    void* pParm
  )
{

  // For access to game state variable
  pmtxGameStateLock->acquire();

  // Play loop
  while ( eGameState < GAME_OVER ) {

    // Play the ball
    cout << endl << "PLAYER-B" << endl;

    // Now its PLAYER-A's turn
    eGameState = PLAYER_A;

    // Signal to PLAYER-A that now it is his turn
    pcndGameStateChange->signal();

    // Wait until PLAYER-A finishes playing the ball
    do {

      pcndGameStateChange->wait();

      if ( PLAYER_A == eGameState )
        cout << endl << "----PLAYER-B: SPURIOUS WAKEUP!!!" << endl;

    } while ( PLAYER_A == eGameState );

  }

  // PLAYER-B gone
  eGameState = (GAME_STATE)(eGameState+1);
  cout << endl << "PLAYER-B GONE" << endl;

  // No more access to state variable needed
  pmtxGameStateLock->release();

  // Signal PLAYER-B gone event
  pcndGameStateChange->broadcast();

  return 0;

}


int
main (int, ACE_TCHAR *[])
{

  pmtxGameStateLock   = new ACE_Mutex();
  pcndGameStateChange = new ACE_Condition< ACE_Mutex >( *pmtxGameStateLock
);

  // Set initial state
  eGameState = START_GAME;

  // Create players
  ACE_Thread::spawn( playerA );
  ACE_Thread::spawn( playerB );

  // Give them 5 sec. to play
  Sleep( 5000 );//sleep( 5 );

  // Set game over state
  pmtxGameStateLock->acquire();
  eGameState = GAME_OVER;

  // Let them know
  pcndGameStateChange->broadcast();

  // Wait for players to stop
  do {

    pcndGameStateChange->wait();

  } while ( eGameState < BOTH_PLAYERS_GONE );

  // Cleanup
  cout << endl << "GAME OVER" << endl;
  pmtxGameStateLock->release();
  delete pcndGameStateChange;
  delete pmtxGameStateLock;

  return 0;

}

===========
tennisb.cpp
===========
#include "ace/Synch.h"
#include "ace/Thread.h"

enum GAME_STATE {

  START_GAME,
  PLAYER_A,     // Player A playes the ball
  PLAYER_B,     // Player B playes the ball
  GAME_OVER,
  ONE_PLAYER_GONE,
  BOTH_PLAYERS_GONE

};

enum GAME_STATE             eGameState;
ACE_Mutex*                  pmtxGameStateLock;
ACE_Condition< ACE_Mutex >* pcndGameStateChange;

void*
  playerA(
    void* pParm
  )
{

  // For access to game state variable
  pmtxGameStateLock->acquire();

  // Play loop
  while ( eGameState < GAME_OVER ) {

    // Play the ball
    cout << endl << "PLAYER-A" << endl;

    // Now its PLAYER-B's turn
    eGameState = PLAYER_B;

    // Signal to PLAYER-B that now it is his turn
    pcndGameStateChange->broadcast();

    // Wait until PLAYER-B finishes playing the ball
    do {

      pcndGameStateChange->wait();

      if ( PLAYER_B == eGameState )
        cout << endl << "----PLAYER-A: SPURIOUS WAKEUP!!!" << endl;

    } while ( PLAYER_B == eGameState );

  }

  // PLAYER-A gone
  eGameState = (GAME_STATE)(eGameState+1);
  cout << endl << "PLAYER-A GONE" << endl;

  // No more access to state variable needed
  pmtxGameStateLock->release();

  // Signal PLAYER-A gone event
  pcndGameStateChange->broadcast();

  return 0;

}

void*
  playerB(
    void* pParm
  )
{

  // For access to game state variable
  pmtxGameStateLock->acquire();

  // Play loop
  while ( eGameState < GAME_OVER ) {

    // Play the ball
    cout << endl << "PLAYER-B" << endl;

    // Now its PLAYER-A's turn
    eGameState = PLAYER_A;

    // Signal to PLAYER-A that now it is his turn
    pcndGameStateChange->broadcast();

    // Wait until PLAYER-A finishes playing the ball
    do {

      pcndGameStateChange->wait();

      if ( PLAYER_A == eGameState )
        cout << endl << "----PLAYER-B: SPURIOUS WAKEUP!!!" << endl;

    } while ( PLAYER_A == eGameState );

  }

  // PLAYER-B gone
  eGameState = (GAME_STATE)(eGameState+1);
  cout << endl << "PLAYER-B GONE" << endl;

  // No more access to state variable needed
  pmtxGameStateLock->release();

  // Signal PLAYER-B gone event
  pcndGameStateChange->broadcast();

  return 0;

}


int
main (int, ACE_TCHAR *[])
{

  pmtxGameStateLock   = new ACE_Mutex();
  pcndGameStateChange = new ACE_Condition< ACE_Mutex >( *pmtxGameStateLock
);

  // Set initial state
  eGameState = START_GAME;

  // Create players
  ACE_Thread::spawn( playerA );
  ACE_Thread::spawn( playerB );

  // Give them 5 sec. to play
  Sleep( 5000 );//sleep( 5 );

  // Make some noise
  pmtxGameStateLock->acquire();
  cout << endl << "---Noise ON..." << endl;
  pmtxGameStateLock->release();
  for ( int i = 0; i < 100000; i++ )
    pcndGameStateChange->broadcast();
  cout << endl << "---Noise OFF" << endl;

  // Set game over state
  pmtxGameStateLock->acquire();
  eGameState = GAME_OVER;
  cout << endl << "---Stopping the game..." << endl;

  // Let them know
  pcndGameStateChange->broadcast();

  // Wait for players to stop
  do {

    pcndGameStateChange->wait();

  } while ( eGameState < BOTH_PLAYERS_GONE );

  // Cleanup
  cout << endl << "GAME OVER" << endl;
  pmtxGameStateLock->release();
  delete pcndGameStateChange;
  delete pmtxGameStateLock;

  return 0;

}
.
.
.
David Schwartz <davids@webmaster.com> wrote:
>> > It's compliant
>>
>> That is really good.
>
>> Tomorrow (I have to go urgently now) I will try to
>> demonstrate the lost-signal "problem" of current
>> pthread-win32 and ACE-(variant w/o SingleObjectAndWait)
>> implementations: players start suddenly drop their balls :-)
>> (with no change in source code).
>
>Signals aren't lost, they're going to the main thread,
>which isn't coded correctly to handle them. Try this:
>
>  // Wait for players to stop
>  do {
>
>    pthread_cond_wait( &cndGameStateChange,&mtxGameStateLock );
>printf("Main thread stole a signal\n");
>
>  } while ( eGameState < BOTH_PLAYERS_GONE );
>
>I bet everytime you thing a signal is lost, you'll see that printf.
>The signal isn't lost, it was stolen by another thread.

well, you can probably loose your bet.. it was indeed stolen
by "another" thread but not the one you seem to think of.

I think that what actually happens is the following:

H:\SA\UXX\pt\PTHREADS\TESTS>tennis3.exe

PLAYER-A

PLAYER-B

----PLAYER-B: SPURIOUS WAKEUP!!!

PLAYER-A GONE

PLAYER-B GONE

GAME OVER

H:\SA\UXX\pt\PTHREADS\TESTS>

here you can see that PLAYER-B after playing his first
ball (which came via signal from PLAYER-A) just dropped
it down. What happened is that his signal to player A
was consumed as spurious wakeup by himself (player B).

The implementation has a problem:

================
waiting threads:
================

{ /** Critical Section

  inc cond.waiters_count

}

  /*
  /* Atomic only if using Win32 SignalObjectAndWait
  /*
  cond.mtx.release

  /*** ^^-- A THREAD WHICH DID SIGNAL MAY ACQUIRE THE MUTEX,
  /***      GO INTO WAIT ON THE SAME CONDITION AND OVERTAKE
  /***      ORIGINAL WAITER(S) CONSUMING ITS OWN SIGNAL!

  cond.sem.wait

Player-A after playing game's initial ball went into
wait (called _wait) but was pre-empted before reaching
wait semaphore. He was counted as waiter but was not
actually waiting/blocked yet.

===============
signal threads:
===============

{ /** Critical Section

  waiters_count = cond.waiters_count

}

  if ( waiters_count != 0 )

    sem.post 1

  endif

Player-B after he received signal/ball from Player A
called _signal. The _signal did see that there was
one waiter blocked on the condition (Player-A) and
released the semaphore.. (but it did not unblock
Player-A because he was not actually blocked).
Player-B thread continued its execution, called _wait,
was counted as second waiter BUT was allowed to slip
through opened semaphore gate (which was opened for
Player-B) and received his own signal. Player B remained
blocked followed by Player A. Deadlock happened which
lasted until main thread came in and said game over.

It seems to me that the implementation fails to
correctly implement the following statement
from specification:

http://www.opengroup.org/
onlinepubs/007908799/xsh/pthread_cond_wait.html

"These functions atomically release mutex and cause
the calling thread to block on the condition variable
cond; atomically here means "atomically with respect
to access by another thread to the mutex and then the
condition variable". That is, if another thread is
able to acquire the mutex after the about-to-block
thread has released it, then a subsequent call to
pthread_cond_signal() or pthread_cond_broadcast()
in that thread behaves as if it were issued after
the about-to-block thread has blocked."

Question: Am I right?

(I produced the program output above by simply
adding ?Sleep( 1 )?:

================
waiting threads:
================

{ /** Critical Section

  inc cond.waiters_count

}

  /*
  /* Atomic only if using Win32 SignalObjectAndWait
  /*
  cond.mtx.release

Sleep( 1 ); // Win32

  /*** ^^-- A THREAD WHICH DID SIGNAL MAY ACQUIRE THE MUTEX,
  /***      GO INTO WAIT ON THE SAME CONDITION AND OVERTAKE
  /***      ORIGINAL WAITER(S) CONSUMING ITS OWN SIGNAL!

  cond.sem.wait

to the source code of pthread-win32 implementation:

http://sources.redhat.com/cgi-bin/cvsweb.cgi/pthreads/
condvar.c?rev=1.36&content-type=text/
x-cvsweb-markup&cvsroot=pthreads-win32


  /*
  * We keep the lock held just long enough to increment the count of
  * waiters by one (above).
  * Note that we can't keep it held across the
  * call to sem_wait since that will deadlock other calls
  * to pthread_cond_signal
  */
  cleanup_args.mutexPtr = mutex;
  cleanup_args.cv = cv;
  cleanup_args.resultPtr = &result;

  pthread_cleanup_push (ptw32_cond_wait_cleanup, (void *)
&cleanup_args);

  if ((result = pthread_mutex_unlock (mutex)) == 0)
    {((result
Sleep( 1 ); // @AT

      /*
      * Wait to be awakened by
      *              pthread_cond_signal, or
      *              pthread_cond_broadcast, or
      *              a timeout
      *
      * Note:
      *      ptw32_sem_timedwait is a cancelation point,
      *      hence providing the
      *      mechanism for making pthread_cond_wait a cancelation
      *      point. We use the cleanup mechanism to ensure we
      *      re-lock the mutex and decrement the waiters count
      *      if we are canceled.
      */
      if (ptw32_sem_timedwait (&(cv->sema), abstime) == -1)         {
          result = errno;
        }
    }

  pthread_cleanup_pop (1);  /* Always cleanup */


BTW, on my system (2 CPUs) I can manage to get
signals lost even without any source code modification
if I run the tennis program many times in different
shell sessions.
.
.
.
David Schwartz <davids@webmaster.com> wrote:
>terekhov@my-deja.com wrote:
>
>> well, it might be that the program is in fact buggy.
>> but you did not show me any bug.
>
>You're right. I was close but not dead on. I was correct, however,
>that the code is buggy because it uses 'pthread_cond_signal' even
>though not any thread waiting on the condition variable can do the
>job. I was wrong in which thread could be waiting on the cv but
>unable to do the job.

Okay, lets change 'pthread_cond_signal' to 'pthread_cond_broadcast'
but also add some noise from main() right before declaring the game
to be over (I need it in order to demonstrate another problem of
pthread-win32/ACE implementations - broadcast deadlock)...
.
.
.
It is my understanding of POSIX conditions,
that on correct implementation added noise
in form of unnecessary broadcasts from main,
should not break the tennis program. The
only 'side effect' of added noise on correct
implementation would be 'spurious wakeups' of
players (in fact they are not spurious,
players just see them as spurious) unblocked,
not by another player but by main before
another player had a chance to acquire the
mutex and change the game state variable:
.
.
.

PLAYER-B

PLAYER-A

---Noise ON...

PLAYER-B

PLAYER-A

.
.
.

PLAYER-B

PLAYER-A

----PLAYER-A: SPURIOUS WAKEUP!!!

PLAYER-B

PLAYER-A

---Noise OFF

PLAYER-B

---Stopping the game...

PLAYER-A GONE

PLAYER-B GONE

GAME OVER

H:\SA\UXX\pt\PTHREADS\TESTS>

On pthread-win32/ACE implementations the
program could stall:

.
.
.

PLAYER-A

PLAYER-B

PLAYER-A

PLAYER-B

PLAYER-A

PLAYER-B

PLAYER-A

PLAYER-B

---Noise ON...

PLAYER-A

---Noise OFF
^C
H:\SA\UXX\pt\PTHREADS\TESTS>


The implementation has problems:

================
waiting threads:
================

{ /** Critical Section

  inc cond.waiters_count

}

  /*
  /* Atomic only if using Win32 SignalObjectAndWait
  /*
  cond.mtx.release
  cond.sem.wait

  /*** ^^-- WAITER CAN BE PREEMPTED AFTER BEING UNBLOCKED...

{ /** Critical Section

  dec cond.waiters_count

  /*** ^^- ...AND BEFORE DECREMENTING THE COUNT (1)

  last_waiter = ( cond.was_broadcast &&
                    cond.waiters_count == 0 )

  if ( last_waiter )

    cond.was_broadcast = FALSE

  endif

}

  if ( last_waiter )

    /*
    /* Atomic only if using Win32 SignalObjectAndWait
    /*
    cond.auto_reset_event_or_sem.post /* Event for Win32
    cond.mtx.acquire

  /*** ^^-- ...AND BEFORE CALL TO mtx.acquire (2)

  /*** ^^-- NESTED BROADCASTS RESULT IN A DEADLOCK


  else

    cond.mtx.acquire

  /*** ^^-- ...AND BEFORE CALL TO mtx.acquire (3)

  endif


==================
broadcast threads:
==================

{ /** Critical Section

  waiters_count = cond.waiters_count

  if ( waiters_count != 0 )

    cond.was_broadcast = TRUE

  endif

}

if ( waiters_count != 0 )

  cond.sem.post waiters_count

  /*** ^^^^^--- SPURIOUS WAKEUPS DUE TO (1)

  cond.auto_reset_event_or_sem.wait /* Event for Win32

  /*** ^^^^^--- DEADLOCK FOR FURTHER BROADCASTS IF THEY
                HAPPEN TO GO INTO WAIT WHILE PREVIOUS
                BROADCAST IS STILL IN PROGRESS/WAITING

endif

a) cond.waiters_count does not accurately reflect
number of waiters blocked on semaphore - that could
result (in the time window when counter is not accurate)
in spurios wakeups organised by subsequent _signals
and _broadcasts. From standard compliance point of view
that is OK but that could be a real problem from
performance/efficiency point of view.

b) If subsequent broadcast happen to go into wait on
cond.auto_reset_event_or_sem before previous
broadcast was unblocked from cond.auto_reset_event_or_sem
by its last waiter, one of two blocked threads will
remain blocked because last_waiter processing code
fails to unblock both threads.

In the situation with tennisb.c the Player-B was put
in a deadlock by noise (broadcast) coming from main
thread. And since Player-B holds the game state
mutex when it calls broadcast, the whole program
stalled: Player-A was deadlocked on mutex and
main thread after finishing with producing the noise
was deadlocked on mutex too (needed to declare the
game over)

(I produced the program output above by simply
adding ?Sleep( 1 )?:

==================
broadcast threads:
==================

{ /** Critical Section

  waiters_count = cond.waiters_count

  if ( waiters_count != 0 )

    cond.was_broadcast = TRUE

  endif

}

if ( waiters_count != 0 )

Sleep( 1 ); //Win32

  cond.sem.post waiters_count

  /*** ^^^^^--- SPURIOUS WAKEUPS DUE TO (1)

  cond.auto_reset_event_or_sem.wait /* Event for Win32

  /*** ^^^^^--- DEADLOCK FOR FURTHER BROADCASTS IF THEY
                HAPPEN TO GO INTO WAIT WHILE PREVIOUS
                BROADCAST IS STILL IN PROGRESS/WAITING

endif

to the source code of pthread-win32 implementation:

http://sources.redhat.com/cgi-bin/cvsweb.cgi/pthreads/
condvar.c?rev=1.36&content-type=text/
x-cvsweb-markup&cvsroot=pthreads-win32

  if (wereWaiters)
    {(wereWaiters)sroot=pthreads-win32eb.cgi/pthreads/Yem...m
      /*
      * Wake up all waiters
      */

Sleep( 1 ); //@AT

#ifdef NEED_SEM

      result = (ptw32_increase_semaphore( &cv->sema, cv->waiters )
                 ? 0
                : EINVAL);

#else /* NEED_SEM */

      result = (ReleaseSemaphore( cv->sema, cv->waiters, NULL )
                 ? 0
                : EINVAL);

#endif /* NEED_SEM */

    }

  (void) pthread_mutex_unlock(&(cv->waitersLock));

  if (wereWaiters && result == 0)
    {(wereWaiters
      /*
       * Wait for all the awakened threads to acquire their part of
       * the counting semaphore
       */

      if (WaitForSingleObject (cv->waitersDone, INFINITE)
          == WAIT_OBJECT_0)
        {
          result = 0;
        }
      else
        {
          result = EINVAL;
        }

    }

  return (result);

}

BTW, on my system (2 CPUs) I can manage to get
the program stalled even without any source code
modification if I run the tennisb program many
times in different shell sessions.

===================
pthread-win32 patch
===================
struct pthread_cond_t_ {
  long            nWaitersBlocked;   /* Number of threads blocked
*/
  long            nWaitersUnblocked; /* Number of threads unblocked
*/
  long            nWaitersToUnblock; /* Number of threads to unblock
*/
  sem_t           semBlockQueue;     /* Queue up threads waiting for the
*/
                                     /*   condition to become signalled
*/
  sem_t           semBlockLock;      /* Semaphore that guards access to
*/
                                     /* | waiters blocked count/block queue
*/
                                     /* +-> Mandatory Sync.LEVEL-1
*/
  pthread_mutex_t mtxUnblockLock;    /* Mutex that guards access to
*/
                                     /* | waiters (to)unblock(ed) counts
*/
                                     /* +-> Optional* Sync.LEVEL-2
*/
};                                   /* Opt*) for _timedwait and
cancellation*/

int
pthread_cond_init (pthread_cond_t * cond, const pthread_condattr_t * attr)
  int result = EAGAIN;
  pthread_cond_t cv = NULL;

  if (cond == NULL)
    {(cond
      return EINVAL;
    }

  if ((attr != NULL && *attr != NULL) &&
      ((*attr)->pshared == PTHREAD_PROCESS_SHARED))
    {
      /*
       * Creating condition variable that can be shared between
       * processes.
       */
      result = ENOSYS;

      goto FAIL0;
    }

  cv = (pthread_cond_t) calloc (1, sizeof (*cv));

  if (cv == NULL)
    {(cv
      result = ENOMEM;
      goto FAIL0;
    }

  cv->nWaitersBlocked   = 0;
  cv->nWaitersUnblocked = 0;
  cv->nWaitersToUnblock = 0;

  if (sem_init (&(cv->semBlockLock), 0, 1) != 0)
    {(sem_init
      goto FAIL0;
    }

  if (sem_init (&(cv->semBlockQueue), 0, 0) != 0)
    {(sem_init
      goto FAIL1;
    }

  if (pthread_mutex_init (&(cv->mtxUnblockLock), 0) != 0)
    {(pthread_mutex_init
      goto FAIL2;
    }


  result = 0;

  goto DONE;

  /*
   * -------------
   * Failed...
   * -------------
   */
FAIL2:
  (void) sem_destroy (&(cv->semBlockQueue));

FAIL1:
  (void) sem_destroy (&(cv->semBlockLock));

FAIL0:
DONE:
  *cond = cv;

  return (result);

}                               /* pthread_cond_init */

int
pthread_cond_destroy (pthread_cond_t * cond)
{
  int result = 0;
  pthread_cond_t cv;

  /*
   * Assuming any race condition here is harmless.
   */
  if (cond == NULL
      || *cond == NULL)
    {
      return EINVAL;
    }

  if (*cond != (pthread_cond_t) PTW32_OBJECT_AUTO_INIT)
    {(*cond
      cv = *cond;

      /*
       * Synchronize access to waiters blocked count (LEVEL-1)
       */
      if (sem_wait(&(cv->semBlockLock)) != 0)
        {(sem_wait(&(cv->semBlockLock))
          return errno;
        }

      /*
       * Synchronize access to waiters (to)unblock(ed) counts (LEVEL-2)
       */
      if ((result = pthread_mutex_lock(&(cv->mtxUnblockLock))) != 0)
        {((result
          (void) sem_post(&(cv->semBlockLock));
          return result;
        }

      /*
       * Check whether cv is still busy (still has waiters blocked)
       */
      if (cv->nWaitersBlocked - cv->nWaitersUnblocked > 0)
        {(cv->nWaitersBlocked
          (void) sem_post(&(cv->semBlockLock));
          (void) pthread_mutex_unlock(&(cv->mtxUnblockLock));
          return EBUSY;
        }

      /*
       * Now it is safe to destroy
       */
      (void) sem_destroy (&(cv->semBlockLock));
      (void) sem_destroy (&(cv->semBlockQueue));
      (void) pthread_mutex_unlock (&(cv->mtxUnblockLock));
      (void) pthread_mutex_destroy (&(cv->mtxUnblockLock));

      free(cv);
      *cond = NULL;
    }
  else
    {
      /*
       * See notes in ptw32_cond_check_need_init() above also.
       */
      EnterCriticalSection(&ptw32_cond_test_init_lock);

      /*
       * Check again.
       */
      if (*cond == (pthread_cond_t) PTW32_OBJECT_AUTO_INIT)
        {(*cond
          /*
           * This is all we need to do to destroy a statically
           * initialised cond that has not yet been used (initialised).
           * If we get to here, another thread
           * waiting to initialise this cond will get an EINVAL.
           */
          *cond = NULL;
        }
      else
        {
          /*
           * The cv has been initialised while we were waiting
           * so assume it's in use.
           */
          result = EBUSY;
        }

      LeaveCriticalSection(&ptw32_cond_test_init_lock);
    }

  return (result);
}

/*
 * Arguments for cond_wait_cleanup, since we can only pass a
 * single void * to it.
 */
typedef struct {
  pthread_mutex_t * mutexPtr;
  pthread_cond_t cv;
  int * resultPtr;
} ptw32_cond_wait_cleanup_args_t;

static void
ptw32_cond_wait_cleanup(void * args)
{
  ptw32_cond_wait_cleanup_args_t * cleanup_args =
(ptw32_cond_wait_cleanup_args_t *) args;
  pthread_cond_t cv = cleanup_args->cv;
  int * resultPtr = cleanup_args->resultPtr;
  int eLastSignal; /* enum: 1=yes 0=no -1=cancelled/timedout w/o signal(s)
*/
  int result;

  /*
   * Whether we got here as a result of signal/broadcast or because of
   * timeout on wait or thread cancellation we indicate that we are no
   * longer waiting. The waiter is responsible for adjusting waiters
   * (to)unblock(ed) counts (protected by unblock lock).
   * Unblock lock/Sync.LEVEL-2 supports _timedwait and cancellation.
   */
  if ((result = pthread_mutex_lock(&(cv->mtxUnblockLock))) != 0)
    {((result
      *resultPtr = result;
      return;
    }

  cv->nWaitersUnblocked++;

  eLastSignal = (cv->nWaitersToUnblock == 0) ?
                   -1 : (--cv->nWaitersToUnblock == 0);

  /*
   * No more LEVEL-2 access to waiters (to)unblock(ed) counts needed
   */
  if ((result = pthread_mutex_unlock(&(cv->mtxUnblockLock))) != 0)
    {((result
      *resultPtr = result;
      return;
    }

  /*
   * If last signal...
   */
  if (eLastSignal == 1)
    {(eLastSignal
     /*
      * ...it means that we have end of 'atomic' signal/broadcast
      */
      if (sem_post(&(cv->semBlockLock)) != 0)
        {(sem_post(&(cv->semBlockLock))
          *resultPtr = errno;
          return;
        }
    }
  /*
   * If not last signal and not timed out/cancelled wait w/o signal...
   */
  else if (eLastSignal == 0)
    {
     /*
      * ...it means that next waiter can go through semaphore
      */
      if (sem_post(&(cv->semBlockQueue)) != 0)
        {(sem_post(&(cv->semBlockQueue))
          *resultPtr = errno;
          return;
        }
    }

  /*
   * XSH: Upon successful return, the mutex has been locked and is owned
   * by the calling thread
   */
  if ((result = pthread_mutex_lock(cleanup_args->mutexPtr)) != 0)
    {((result
      *resultPtr = result;
    }

}                               /* ptw32_cond_wait_cleanup */

static int
ptw32_cond_timedwait (pthread_cond_t * cond,
                      pthread_mutex_t * mutex,
                      const struct timespec *abstime)
{
  int result = 0;
  pthread_cond_t cv;
  ptw32_cond_wait_cleanup_args_t cleanup_args;

  if (cond == NULL || *cond == NULL)
    {(cond
      return EINVAL;
    }

  /*
   * We do a quick check to see if we need to do more work
   * to initialise a static condition variable. We check
   * again inside the guarded section of ptw32_cond_check_need_init()
   * to avoid race conditions.
   */
  if (*cond == (pthread_cond_t) PTW32_OBJECT_AUTO_INIT)
    {(*cond
      result = ptw32_cond_check_need_init(cond);
    }

  if (result != 0 && result != EBUSY)
    {(result
      return result;
    }

  cv = *cond;

  /*
   * Synchronize access to waiters blocked count (LEVEL-1)
   */
  if (sem_wait(&(cv->semBlockLock)) != 0)
    {(sem_wait(&(cv->semBlockLock))
      return errno;
    }

  cv->nWaitersBlocked++;

  /*
   * Thats it. Counted means waiting, no more access needed
   */
  if (sem_post(&(cv->semBlockLock)) != 0)
    {(sem_post(&(cv->semBlockLock))
      return errno;
    }

  /*
   * Setup this waiter cleanup handler
   */
  cleanup_args.mutexPtr = mutex;
  cleanup_args.cv = cv;
  cleanup_args.resultPtr = &result;

  pthread_cleanup_push (ptw32_cond_wait_cleanup, (void *) &cleanup_args);

  /*
   * Now we can release 'mutex' and...
   */
  if ((result = pthread_mutex_unlock (mutex)) == 0)
    {((result

      /*
       * ...wait to be awakened by
       *              pthread_cond_signal, or
       *              pthread_cond_broadcast, or
       *              timeout, or
       *              thread cancellation
       *
       * Note:
       *
       *      ptw32_sem_timedwait is a cancellation point,
       *      hence providing the mechanism for making
       *      pthread_cond_wait a cancellation point.
       *      We use the cleanup mechanism to ensure we
       *      re-lock the mutex and adjust (to)unblock(ed) waiters
       *      counts if we are cancelled, timed out or signalled.
       */
      if (ptw32_sem_timedwait (&(cv->semBlockQueue), abstime) != 0)
        {(ptw32_sem_timedwait
          result = errno;
        }
    }

  /*
   * Always cleanup
   */
  pthread_cleanup_pop (1);


  /*
   * "result" can be modified by the cleanup handler.
   */
  return (result);

}                               /* ptw32_cond_timedwait */


static int
ptw32_cond_unblock (pthread_cond_t * cond,
                    int unblockAll)
{
  int result;
  pthread_cond_t cv;

  if (cond == NULL || *cond == NULL)
    {(cond
      return EINVAL;
    }

  cv = *cond;

  /*
   * No-op if the CV is static and hasn't been initialised yet.
   * Assuming that any race condition is harmless.
   */
  if (cv == (pthread_cond_t) PTW32_OBJECT_AUTO_INIT)
    {(cv
      return 0;
    }

  /*
   * Synchronize access to waiters blocked count (LEVEL-1)
   */
  if (sem_wait(&(cv->semBlockLock)) != 0)
    {(sem_wait(&(cv->semBlockLock))
      return errno;
    }

  /*
   * Synchronize access to waiters (to)unblock(ed) counts (LEVEL-2)
   * This sync.level supports _timedwait and cancellation
   */
  if ((result = pthread_mutex_lock(&(cv->mtxUnblockLock))) != 0)
    {((result
      return result;
    }

  /*
   * Adjust waiters blocked and unblocked counts (collect garbage)
   */
  if (cv->nWaitersUnblocked != 0)
    {(cv->nWaitersUnblocked
      cv->nWaitersBlocked  -= cv->nWaitersUnblocked;
      cv->nWaitersUnblocked = 0;
    }

  /*
   * If (after adjustment) there are still some waiters blocked counted...
   */
  if ( cv->nWaitersBlocked > 0)
    {(
      /*
       * We will unblock first waiter and leave semBlockLock/LEVEL-1 locked
       * LEVEL-1 access is left disabled until last signal/unblock
completes
       */
      cv->nWaitersToUnblock = (unblockAll) ? cv->nWaitersBlocked : 1;

      /*
       * No more LEVEL-2 access to waiters (to)unblock(ed) counts needed
       * This sync.level supports _timedwait and cancellation
       */
      if ((result = pthread_mutex_unlock(&(cv->mtxUnblockLock))) != 0)
        {((result
          return result;
        }


      /*
       * Now, with LEVEL-2 lock released let first waiter go through
semaphore
       */
      if (sem_post(&(cv->semBlockQueue)) != 0)
        {(sem_post(&(cv->semBlockQueue))
          return errno;
        }
    }
  /*
   * No waiter blocked - no more LEVEL-1 access to blocked count needed...
   */
  else if (sem_post(&(cv->semBlockLock)) != 0)
    {
      return errno;
    }
  /*
   * ...and no more LEVEL-2 access to waiters (to)unblock(ed) counts needed
too
   * This sync.level supports _timedwait and cancellation
   */
  else
    {
      result = pthread_mutex_unlock(&(cv->mtxUnblockLock));
    }

  return(result);

}                               /* ptw32_cond_unblock */

int
pthread_cond_wait (pthread_cond_t * cond,
                   pthread_mutex_t * mutex)
{
  /* The NULL abstime arg means INFINITE waiting. */
  return(ptw32_cond_timedwait(cond, mutex, NULL));
}                               /* pthread_cond_wait */


int
pthread_cond_timedwait (pthread_cond_t * cond,
                        pthread_mutex_t * mutex,
                        const struct timespec *abstime)
{
  if (abstime == NULL)
    {(abstime
      return EINVAL;
    }

  return(ptw32_cond_timedwait(cond, mutex, abstime));
}                               /* pthread_cond_timedwait */


int
pthread_cond_signal (pthread_cond_t * cond)
{
  /* The '0'(FALSE) unblockAll arg means unblock ONE waiter. */
  return(ptw32_cond_unblock(cond, 0));
}                               /* pthread_cond_signal */

int
pthread_cond_broadcast (pthread_cond_t * cond)
{
  /* The '1'(TRUE) unblockAll arg means unblock ALL waiters. */
  return(ptw32_cond_unblock(cond, 1));
}                               /* pthread_cond_broadcast */




TEREKHOV@de.ibm.com on 17.01.2001 01:00:57

Please respond to TEREKHOV@de.ibm.com

To:   pthreads-win32@sourceware.cygnus.com
cc:   schmidt@uci.edu
Subject:  win32 conditions: sem+counter+event = broadcast_deadlock +
      spur.wakeup/unfairness/incorrectness ??







Hi,

Problem 1: broadcast_deadlock

It seems that current implementation does not provide "atomic"
broadcasts. That may lead to "nested" broadcasts... and it seems
that nested case is not handled correctly -> producing a broadcast
DEADLOCK as a result.

Scenario:

N (>1) waiting threads W1..N are blocked (in _wait) on condition's
semaphore.

Thread B1 calls pthread_cond_broadcast, which results in "releasing" N
W threads via incrementing semaphore counter by N (stored in
cv->waiters) BUT cv->waiters counter does not change!! The caller
thread B1 remains blocked on cv->waitersDone event (auto-reset!!) BUT
condition is not protected from starting another broadcast (when called
on another thread) while still waiting for the "old" broadcast to
complete on thread B1.

M (>=0, <N) W threads are fast enough to go thru their _wait call and
decrement cv->waiters counter.

L (N-M) "late" waiter W threads are a) still blocked/not returned from
their semaphore wait call or b) were preempted after sem_wait but before
lock( &cv->waitersLock ) or c) are blocked on cv->waitersLock.

cv->waiters is still > 0 (= L).

Another thread B2 (or some W thread from M group) calls
pthread_cond_broadcast and gains access to counter... neither a) nor b)
prevent thread B2 in pthread_cond_broadcast from gaining access to
counter and starting another broadcast ( for c) - it depends on
cv->waitersLock scheduling rules: FIFO=OK, PRTY=PROBLEM,... )

That call to pthread_cond_broadcast (on thread B2) will result in
incrementing semaphore by cv->waiters (=L) which is INCORRECT (all
W1..N were in fact already released by thread B1) and waiting on
_auto-reset_ event cv->waitersDone which is DEADLY WRONG (produces a
deadlock)...

All late W1..L threads now have a chance to complete their _wait call.
Last W_L thread sets an auto-reselt event cv->waitersDone which will
release either B1 or B2 leaving one of B threads in a deadlock.

Problem 2: spur.wakeup/unfairness/incorrectness

It seems that:

a) because of the same problem with counter which does not reflect the
actual number of NOT RELEASED waiters, the signal call may increment
a semaphore counter w/o having a waiter blocked on it. That will result
in (best case) spurious wake ups - performance degradation due to
unnecessary context switches and predicate re-checks and (in worth case)
unfairness/incorrectness problem - see b)

b) neither signal nor broadcast prevent other threads - "new waiters"
(and in the case of signal, the caller thread as well) from going into
_wait and overtaking "old" waiters (already released but still not returned
from sem_wait on condition's semaphore). Win semaphore just [API DOC]:
"Maintains a count between zero and some maximum value, limiting the number
of threads that are simultaneously accessing a shared resource." Calling
ReleaseSemaphore does not imply (at least not documented) that on return
from ReleaseSemaphore all waiters will in fact become released (returned
from their Wait... call) and/or that new waiters calling Wait... afterwards
will become less importance. It is NOT documented to be an atomic release
of
waiters... And even if it would be there is still a problem with a thread
being preempted after Wait on semaphore and before Wait on cv->waitersLock
and scheduling rules for cv->waitersLock itself
(??WaitForMultipleObjects??)
That may result in unfairness/incorrectness problem as described
for SetEvent impl. in "Strategies for Implementing POSIX Condition
Variables
on Win32": http://www.cs.wustl.edu/~schmidt/win32-cv-1.html

Unfairness -- The semantics of the POSIX pthread_cond_broadcast function is
to wake up all threads currently blocked in wait calls on the condition
variable. The awakened threads then compete for the external_mutex. To
ensure
fairness, all of these threads should be released from their
pthread_cond_wait calls and allowed to recheck their condition expressions
before other threads can successfully complete a wait on the condition
variable.

Unfortunately, the SetEvent implementation above does not guarantee that
all
threads sleeping on the condition variable when cond_broadcast is called
will
acquire the external_mutex and check their condition expressions. Although
the Pthreads specification does not mandate this degree of fairness, the
lack of fairness can cause starvation.

To illustrate the unfairness problem, imagine there are 2 threads, C1 and
C2,
that are blocked in pthread_cond_wait on condition variable not_empty_ that
is guarding a thread-safe message queue. Another thread, P1 then places two
messages onto the queue and calls pthread_cond_broadcast. If C1 returns
from
pthread_cond_wait, dequeues and processes the message, and immediately
waits
again then it and only it may end up acquiring both messages. Thus, C2 will
never get a chance to dequeue a message and run.

The following illustrates the sequence of events:

1.   Thread C1 attempts to dequeue and waits on CV non_empty_
2.   Thread C2 attempts to dequeue and waits on CV non_empty_
3.   Thread P1 enqueues 2 messages and broadcasts to CV not_empty_
4.   Thread P1 exits
5.   Thread C1 wakes up from CV not_empty_, dequeues a message and runs
6.   Thread C1 waits again on CV not_empty_, immediately dequeues the 2nd
        message and runs
7.   Thread C1 exits
8.   Thread C2 is the only thread left and blocks forever since
        not_empty_ will never be signaled

Depending on the algorithm being implemented, this lack of fairness may
yield
concurrent programs that have subtle bugs. Of course, application
developers
should not rely on the fairness semantics of pthread_cond_broadcast.
However,
there are many cases where fair implementations of condition variables can
simplify application code.

Incorrectness -- A variation on the unfairness problem described above
occurs
when a third consumer thread, C3, is allowed to slip through even though it
was not waiting on condition variable not_empty_ when a broadcast occurred.

To illustrate this, we will use the same scenario as above: 2 threads, C1
and
C2, are blocked dequeuing messages from the message queue. Another thread,
P1
then places two messages onto the queue and calls pthread_cond_broadcast.
C1
returns from pthread_cond_wait, dequeues and processes the message. At this
time, C3 acquires the external_mutex, calls pthread_cond_wait and waits on
the events in WaitForMultipleObjects. Since C2 has not had a chance to run
yet, the BROADCAST event is still signaled. C3 then returns from
WaitForMultipleObjects, and dequeues and processes the message in the
queue.
Thus, C2 will never get a chance to dequeue a message and run.

The following illustrates the sequence of events:

1.   Thread C1 attempts to dequeue and waits on CV non_empty_
2.   Thread C2 attempts to dequeue and waits on CV non_empty_
3.   Thread P1 enqueues 2 messages and broadcasts to CV not_empty_
4.   Thread P1 exits
5.   Thread C1 wakes up from CV not_empty_, dequeues a message and runs
6.   Thread C1 exits
7.   Thread C3 waits on CV not_empty_, immediately dequeues the 2nd
        message and runs
8.   Thread C3 exits
9.   Thread C2 is the only thread left and blocks forever since
        not_empty_ will never be signaled

In the above case, a thread that was not waiting on the condition variable
when a broadcast occurred was allowed to proceed. This leads to incorrect
semantics for a condition variable.


COMMENTS???

regards,
alexander.