[c3e3bf]: cleanup.c Maximize Restore History

Download this file

cleanup.c    217 lines (178 with data), 4.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/*
* cleanup.c
*
* Description:
* This translation unit implements routines associated cleaning up
* threads.
*/
#include <errno.h>
#include <malloc.h>
#include "pthread.h"
#include "implement.h"
int
_pthread_handler_push(int stack,
int poporder,
void (*routine)(void *),
void *arg)
{
/* Place the new handler into the list so that handlers are
popped off in the order given by poporder. */
_pthread_handler_node_t * new_handler;
_pthread_handler_node_t * next;
_pthread_handler_node_t ** stacktop;
stacktop = _PTHREAD_STACK(stack);
new_handler =
(_pthread_handler_node_t *) malloc(sizeof(_pthread_handler_node_t));
if (new_handler == NULL)
{
return 0; /* NOMEM */
}
new_handler->routine = routine;
new_handler->arg = arg;
if (poporder == _PTHREAD_HANDLER_POP_LIFO)
{
/* Add the new node to the start of the list. */
new_handler->next = *stacktop;
*stacktop = new_handler;
}
else
{
/* Add the new node to the end of the list. */
new_handler->next = NULL;
if (*stacktop == NULL)
{
*stacktop = new_handler;
}
else
{
next = *stacktop;
while (next->next != NULL)
{
next = next->next;
}
next->next = new_handler;
}
}
return 0;
}
void
_pthread_handler_pop(int stack, int execute)
{
_pthread_handler_node_t ** stacktop;
_pthread_handler_node_t * next;
void (* func)(void *);
void * arg;
stacktop = _PTHREAD_STACK(stack);
if (*stacktop != NULL)
{
func = (*stacktop)->routine;
arg = (*stacktop)->arg;
next = (*stacktop)->next;
free(*stacktop);
*stacktop = next;
if (execute != 0 && func != NULL)
{
(void) func(arg);
}
}
}
void
_pthread_handler_pop_all(int stack, int execute)
{
/* Pop and possibly run all handlers on the given stack. */
_pthread_handler_node_t ** stacktop;
_pthread_handler_node_t * next;
void (* func)(void *);
void * arg;
stacktop = _PTHREAD_STACK(stack);
while (*stacktop != NULL)
{
func = (*stacktop)->routine;
arg = (*stacktop)->arg;
next = (*stacktop)->next;
free(*stacktop);
*stacktop = next;
if (execute != 0 && func != NULL)
{
(void) func(arg);
}
}
}
/* Run destructors for all non-NULL key values for the calling thread.
*/
void
_pthread_destructor_run_all()
{
_pthread_tsd_key_t * key;
int count;
int dirty;
/* This threads private keys */
key = _pthread_tsd_key_table;
/* Stop destructor execution at a finite time. POSIX allows us
to ignore this if we like, even at the risk of an infinite loop.
FIXME: We don't know when to stop yet.
*/
for (count = 0; count < PTHREAD_DESTRUCTOR_ITERATIONS; count++)
{
int k;
void * arg;
dirty = 0;
/* Loop through all keys. */
for (k = 0; k < _POSIX_THREAD_KEYS_MAX; k++)
{
/* CRITICAL SECTION */
pthread_mutex_lock(&_pthread_tsd_mutex);
switch (key->status)
{
case _PTHREAD_TSD_KEY_INUSE:
arg = pthread_getspecific((pthread_key_t) k);
if (arg != NULL && key->destructor != NULL)
{
/* The destructor must be called with the mutex off. */
pthread_mutex_unlock(&_pthread_tsd_mutex);
/* END CRITICAL SECTION */
/* FIXME: Is the destructor supposed to set the key value
to NULL? How is this done when arg is the key value, not
a pointer to it? For now we assume that the destructor
always succeeds.
*/
(void) (key->destructor)(arg);
/* CRITICAL SECTION */
pthread_mutex_lock(&_pthread_tsd_mutex);
pthread_setspecific((pthread_key_t) k, NULL);
#if 0
/* Only needed if we don't assume the destructor
always succeeds.
*/
dirty = 1;
#endif
}
break;
case _PTHREAD_TSD_KEY_DELETED:
key->status = _PTHREAD_TSD_KEY_INUSE;
pthread_setspecific((pthread_key_t) k, NULL);
if (key->in_use <= 0)
{
/* This is the last thread to use this
deleted key. It can now be made available
for re-use.
*/
key->status = _PTHREAD_TSD_KEY_REUSE;
_pthread_key_reuse[_pthread_key_reuse_top++] = k;
}
else
{
key->status = _PTHREAD_TSD_KEY_DELETED;
}
break;
default:
break;
}
pthread_mutex_unlock(&_pthread_tsd_mutex);
/* END CRITICAL SECTION */
key++;
}
if (!dirty)
break;
}
}