[fb8dc5]: signal.c Maximize Restore History

Download this file

signal.c    180 lines (162 with data), 5.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
/*
* signal.c
*
* Description:
* Thread-aware signal functions.
*
* --------------------------------------------------------------------------
*
* Pthreads-win32 - POSIX Threads Library for Win32
* Copyright(C) 1998 John E. Bossom
* Copyright(C) 1999,2005 Pthreads-win32 contributors
*
* Contact Email: rpj@callisto.canberra.edu.au
*
* The current list of contributors is contained
* in the file CONTRIBUTORS included with the source
* code distribution. The list can also be seen at the
* following World Wide Web location:
* http://sources.redhat.com/pthreads-win32/contributors.html
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library in the file COPYING.LIB;
* if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
/*
* Possible future strategy for implementing pthread_kill()
* ========================================================
*
* Win32 does not implement signals.
* Signals are simply software interrupts.
* pthread_kill() asks the system to deliver a specified
* signal (interrupt) to a specified thread in the same
* process.
* Signals are always asynchronous (no deferred signals).
* Pthread-win32 has an async cancelation mechanism.
* A similar system can be written to deliver signals
* within the same process (on ix86 processors at least).
*
* Each thread maintains information about which
* signals it will respond to. Handler routines
* are set on a per-process basis - not per-thread.
* When signalled, a thread will check it's sigmask
* and, if the signal is not being ignored, call the
* handler routine associated with the signal. The
* thread must then (except for some signals) return to
* the point where it was interrupted.
*
* Ideally the system itself would check the target thread's
* mask before possibly needlessly bothering the thread
* itself. This could be done by pthread_kill(), that is,
* in the signaling thread since it has access to
* all pthread_t structures. It could also retrieve
* the handler routine address to minimise the target
* threads response overhead. This may also simplify
* serialisation of the access to the per-thread signal
* structures.
*
* pthread_kill() eventually calls a routine similar to
* ptw32_cancel_thread() which manipulates the target
* threads processor context to cause the thread to
* run the handler launcher routine. pthread_kill() must
* save the target threads current context so that the
* handler launcher routine can restore the context after
* the signal handler has returned. Some handlers will not
* return, eg. the default SIGKILL handler may simply
* call pthread_exit().
*
* The current context is saved in the target threads
* pthread_t structure.
*/
#include "pthread.h"
#include "implement.h"
#if HAVE_SIGSET_T
static void
ptw32_signal_thread ()
{
}
static void
ptw32_signal_callhandler ()
{
}
int
pthread_sigmask (int how, sigset_t const *set, sigset_t * oset)
{
pthread_t thread = pthread_self ();
if (thread.p == NULL)
{
return ENOENT;
}
/* Validate the `how' argument. */
if (set != NULL)
{
switch (how)
{
case SIG_BLOCK:
break;
case SIG_UNBLOCK:
break;
case SIG_SETMASK:
break;
default:
/* Invalid `how' argument. */
return EINVAL;
}
}
/* Copy the old mask before modifying it. */
if (oset != NULL)
{
memcpy (oset, &(thread.p->sigmask), sizeof (sigset_t));
}
if (set != NULL)
{
unsigned int i;
/* FIXME: this code assumes that sigmask is an even multiple of
the size of a long integer. */
unsigned long *src = (unsigned long const *) set;
unsigned long *dest = (unsigned long *) &(thread.p->sigmask);
switch (how)
{
case SIG_BLOCK:
for (i = 0; i < (sizeof (sigset_t) / sizeof (unsigned long)); i++)
{
/* OR the bit field longword-wise. */
*dest++ |= *src++;
}
break;
case SIG_UNBLOCK:
for (i = 0; i < (sizeof (sigset_t) / sizeof (unsigned long)); i++)
{
/* XOR the bitfield longword-wise. */
*dest++ ^= *src++;
}
case SIG_SETMASK:
/* Replace the whole sigmask. */
memcpy (&(thread.p->sigmask), set, sizeof (sigset_t));
break;
}
}
return 0;
}
int
sigwait (const sigset_t * set, int *sig)
{
/* This routine is a cancellation point */
pthread_test_cancel();
}
int
sigaction (int signum, const struct sigaction *act, struct sigaction *oldact)
{
}
#endif /* HAVE_SIGSET_T */