[e7b712]: ChangeLog-5.19 Maximize Restore History

Download this file

ChangeLog-5.19    123 lines (88 with data), 4.1 kB

   Maxima 5.19 change log
   Compiled 2009-08-09

   Backwards-incompatible changes:

 * eigenvector: greater detail in return value

 * package fft:
    renamed ift to inverse_fft
    fft and inverse_fft do not modify their arguments
    fft and inverse_fft take 1 argument (complex), not 2

   New items in core:

 * new functions inverse_erf, inverse_erfc

   New items in share:

 * package hyperint: integration of some algebraic functions

 * package hypergeometric: hypergeometric functions

 * package linearalgebra: new function determinate_by_lu

 * package abs_integrate: new functions floor_int, if_int

 * package simplify_sum: extended Gosper algorithm

   Other revisions:

 * exp: rework implementation

 * realpart, imagpart, cabs, carg: rework implementation

 * revise exponential integral functions

 * apropos: argument is a string, return Maxima user symbols only

 * regularize implmentation of constant declaration

 * pass options from Maxima command line to Lisp

 * regularize use of some special variables

 * package dynamics: revisions

 * package fft: accept list as argument, other revisions

 * package ezunits: revise code, revise and expand documentation

 * package stats: test for the difference of two proportions

 * package sarag: algorithm for the multivariate certificate
 * package descriptive: more options for barsplot

 * package draw: new object "mesh", new options

   Bug fixes:

   2805251: Absence of extract_categories.sh and others
   2825092: %pi^2.0b0 does not evaluate numerically
   2825082: %pi^1.0b0 --> floating point value
   2824928: limit(sqrt(z)/b^z,z,inf)
   2824909: exp(%i*%pi/4) not simplified
   2801821: limit(x*expintegral_ei(x),x,0)
   2797885: problem with integration
   2795534: integrate(expintegral_ei(x),x,0,1) gives result with TRUE
   2794173: Manpage gives incorrect website
   2793827: internal error in integrate
   2793294: derivative of gamma_incomplete
   2792493: hgfred([1],[-5.2],x);
   2787047: Assume has problems after a reset()
   2779385: gudermannian function wrong
   2727078: wrong limit(log(gamma(x+1))/x,x,0)
   2721670: mattrace / FIX
   2699862: derivative of polylogarithm
   2298099: atan2 & logarc
   2029041: a*sqrt(2)/2 unsimplified
   2003386: float(elliptic_kc(1)) causes Lisp error
   1986726: Integrating f(x) with limits after resetting throws an error
   1927178: integrate(sin(t),t,%pi/4,3*%pi/4)
   1923119: 1/sqrt(8)-sqrt(8)/8
   1996354: unsimplifed result from expand
   1899352: integrate asks about (y-1)(y+1) after assume(y^2>1)
   1853191: rat(2/sqrt(2)),algebraic doesn't cancel
   1731624: asked about sign of yx in integral containing only z
   1480562: 2*a*2^k isn't simplified to a*2^(k+1)
   1315837: limit(?foo)
   1310619: example(do) and example(if) not working
   1119228: limit(1/zeroa)
   1053056: TIME(%) always yields 0.0
   1041570: assume(abs(x)<1) should imply x<1 and x>-1
   1023931: logabs not a defmvar
    938134: diff(realpart) bogus
    924868: defint log(sqrt(q^2-1)+1) asks about YX
    826623: simplifer returns %i*%i
    751934: Inconsistent simplification of 1.0*x etc
    721575: 2/sqrt(2) doesn\'t simplify
    660948: simplification of exp(%i*...)
    631216: horner([...],x)/FIX
    619927: (-1.0b0)^(1/3) vs (-1.0d0)^(1/3)
    609464: 1+%e,numer and %e^%e,numer

   unnumbered: 1 was mistakenly considered greater than 1.0
   unnumbered: plot2d(x^(1/3), ...) fails
   unnumbered: unexpected behavior in for loop with variable step
   unnumbered: infinite loop for integrate(1/(x^5-1),x,1,inf)
   unnumbered: integrate(1/(sin(x/3)^2+1),x,0,24)
   unnumbered: integrate(1/(sin(x-3)^2+1),x,3,11)
   unnumbered: ensure foo is a reset-able variable in reset(foo)
   unnumbered: abs((sqrt(3)*%i/2-1/2)/(3*(%i/(6*sqrt(3))-1/6)^(1/3))
   unnumbered: makelist(): argument size appears restricted to integer
   unnumbered: multiple batch calls in a batch file
   unnumbered: integrate(f2(a*x-b)*x^3,x,minf,inf)
                where f2(x):=(2*sigma^(3/2))/(%pi*x^4+2*%pi*sigma*x^2+%pi*sigma^2)