[e25ff0]: src / xine-utils / memcpy.c Maximize Restore History

Download this file

memcpy.c    660 lines (591 with data), 19.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
/*
* Copyright (C) 2001-2012 the xine project
*
* This file is part of xine, a free video player.
*
* xine is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* xine is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* These are the MMX/MMX2/SSE optimized versions of memcpy
*
* This code was adapted from Linux Kernel sources by Nick Kurshev to
* the mplayer program. (http://mplayer.sourceforge.net)
*
* Miguel Freitas split the #ifdefs into several specialized functions that
* are benchmarked at runtime by xine. Some original comments from Nick
* have been preserved documenting some MMX/SSE oddities.
* Also added kernel memcpy function that seems faster than libc one.
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#if defined (ARCH_PPC) && !defined (HOST_OS_DARWIN)
#include "ppcasm_string.h"
#endif
#ifdef HAVE_SYS_TIMES_H
#include <sys/times.h>
#else
#include <time.h>
#endif
#include <stdlib.h>
#include <string.h>
#define LOG_MODULE "memcpy"
#define LOG_VERBOSE
/*
#define LOG
*/
#include <xine/xine_internal.h>
#include "../xine-engine/xine_private.h"
void *(* xine_fast_memcpy)(void *to, const void *from, size_t len);
/* Original comments from mplayer (file: aclib.c)
This part of code was taken by me from Linux-2.4.3 and slightly modified
for MMX, MMX2, SSE instruction set. I have done it since linux uses page aligned
blocks but mplayer uses weakly ordered data and original sources can not
speedup them. Only using PREFETCHNTA and MOVNTQ together have effect!
>From IA-32 Intel Architecture Software Developer's Manual Volume 1,
Order Number 245470:
"10.4.6. Cacheability Control, Prefetch, and Memory Ordering Instructions"
Data referenced by a program can be temporal (data will be used again) or
non-temporal (data will be referenced once and not reused in the immediate
future). To make efficient use of the processor's caches, it is generally
desirable to cache temporal data and not cache non-temporal data. Overloading
the processor's caches with non-temporal data is sometimes referred to as
"polluting the caches".
The non-temporal data is written to memory with Write-Combining semantics.
The PREFETCHh instructions permits a program to load data into the processor
at a suggested cache level, so that it is closer to the processors load and
store unit when it is needed. If the data is already present in a level of
the cache hierarchy that is closer to the processor, the PREFETCHh instruction
will not result in any data movement.
But we should you PREFETCHNTA: Non-temporal data fetch data into location
close to the processor, minimizing cache pollution.
The MOVNTQ (store quadword using non-temporal hint) instruction stores
packed integer data from an MMX register to memory, using a non-temporal hint.
The MOVNTPS (store packed single-precision floating-point values using
non-temporal hint) instruction stores packed floating-point data from an
XMM register to memory, using a non-temporal hint.
The SFENCE (Store Fence) instruction controls write ordering by creating a
fence for memory store operations. This instruction guarantees that the results
of every store instruction that precedes the store fence in program order is
globally visible before any store instruction that follows the fence. The
SFENCE instruction provides an efficient way of ensuring ordering between
procedures that produce weakly-ordered data and procedures that consume that
data.
If you have questions please contact with me: Nick Kurshev: nickols_k@mail.ru.
*/
/* mmx v.1 Note: Since we added alignment of destinition it speedups
of memory copying on PentMMX, Celeron-1 and P2 upto 12% versus
standard (non MMX-optimized) version.
Note: on K6-2+ it speedups memory copying upto 25% and
on K7 and P3 about 500% (5 times).
*/
/* Additional notes on gcc assembly and processors: [MF]
prefetch is specific for AMD processors, the intel ones should be
prefetch0, prefetch1, prefetch2 which are not recognized by my gcc.
prefetchnta is supported both on athlon and pentium 3.
therefore i will take off prefetchnta instructions from the mmx1 version
to avoid problems on pentium mmx and k6-2.
quote of the day:
"Using prefetches efficiently is more of an art than a science"
*/
#if defined(ARCH_X86) || defined(ARCH_X86_64)
#ifndef _MSC_VER
/* for small memory blocks (<256 bytes) this version is faster */
#define small_memcpy(to,from,n)\
{\
register uintptr_t dummy;\
__asm__ __volatile__(\
"rep; movsb"\
:"=&D"(to), "=&S"(from), "=&c"(dummy)\
:"0" (to), "1" (from),"2" (n)\
: "memory");\
}
/* linux kernel __memcpy (from: /include/asm/string.h) */
static __inline__ void * linux_kernel_memcpy_impl (
void * to,
const void * from,
size_t n)
{
int d0, d1, d2;
if( n < 4 ) {
small_memcpy(to,from,n);
}
else
__asm__ __volatile__(
"rep ; movsl\n\t"
"testb $2,%b4\n\t"
"je 1f\n\t"
"movsw\n"
"1:\ttestb $1,%b4\n\t"
"je 2f\n\t"
"movsb\n"
"2:"
: "=&c" (d0), "=&D" (d1), "=&S" (d2)
:"0" (n/4), "q" (n),"1" ((uintptr_t) to),"2" ((uintptr_t) from)
: "memory");
return (to);
}
#define AVX_MMREG_SIZE 32
#define SSE_MMREG_SIZE 16
#define MMX_MMREG_SIZE 8
#define MMX1_MIN_LEN 0x800 /* 2K blocks */
#define MIN_LEN 0x40 /* 64-byte blocks */
/* SSE note: i tried to move 128 bytes a time instead of 64 but it
didn't make any measureable difference. i'm using 64 for the sake of
simplicity. [MF] */
static void * sse_memcpy(void * to, const void * from, size_t len)
{
void *retval;
size_t i;
retval = to;
/* PREFETCH has effect even for MOVSB instruction ;) */
__asm__ __volatile__ (
" prefetchnta (%0)\n"
" prefetchnta 32(%0)\n"
" prefetchnta 64(%0)\n"
" prefetchnta 96(%0)\n"
" prefetchnta 128(%0)\n"
" prefetchnta 160(%0)\n"
" prefetchnta 192(%0)\n"
" prefetchnta 224(%0)\n"
" prefetchnta 256(%0)\n"
" prefetchnta 288(%0)\n"
: : "r" (from) );
if(len >= MIN_LEN)
{
register uintptr_t delta;
/* Align destinition to MMREG_SIZE -boundary */
delta = ((uintptr_t)to)&(SSE_MMREG_SIZE-1);
if(delta)
{
delta=SSE_MMREG_SIZE-delta;
len -= delta;
small_memcpy(to, from, delta);
}
i = len >> 6; /* len/64 */
len&=63;
if(((uintptr_t)from) & 15)
/* if SRC is misaligned */
for(; i>0; i--)
{
__asm__ __volatile__ (
"prefetchnta 320(%0)\n"
"prefetchnta 352(%0)\n"
"movups (%0), %%xmm0\n"
"movups 16(%0), %%xmm1\n"
"movups 32(%0), %%xmm2\n"
"movups 48(%0), %%xmm3\n"
"movntps %%xmm0, (%1)\n"
"movntps %%xmm1, 16(%1)\n"
"movntps %%xmm2, 32(%1)\n"
"movntps %%xmm3, 48(%1)\n"
:: "r" (from), "r" (to) : "memory");
from = ((const unsigned char *)from) + 64;
to = ((unsigned char *)to) + 64;
}
else
/*
Only if SRC is aligned on 16-byte boundary.
It allows to use movaps instead of movups, which required data
to be aligned or a general-protection exception (#GP) is generated.
*/
for(; i>0; i--)
{
__asm__ __volatile__ (
"prefetchnta 320(%0)\n"
"prefetchnta 352(%0)\n"
"movaps (%0), %%xmm0\n"
"movaps 16(%0), %%xmm1\n"
"movaps 32(%0), %%xmm2\n"
"movaps 48(%0), %%xmm3\n"
"movntps %%xmm0, (%1)\n"
"movntps %%xmm1, 16(%1)\n"
"movntps %%xmm2, 32(%1)\n"
"movntps %%xmm3, 48(%1)\n"
:: "r" (from), "r" (to) : "memory");
from = ((const unsigned char *)from) + 64;
to = ((unsigned char *)to) + 64;
}
/* since movntq is weakly-ordered, a "sfence"
* is needed to become ordered again. */
__asm__ __volatile__ ("sfence":::"memory");
}
/*
* Now do the tail of the block
*/
if(len) linux_kernel_memcpy_impl(to, from, len);
return retval;
}
#ifdef HAVE_AVX
static void * avx_memcpy(void * to, const void * from, size_t len)
{
void *retval;
size_t i;
retval = to;
/* PREFETCH has effect even for MOVSB instruction ;) */
__asm__ __volatile__ (
" prefetchnta (%0)\n"
" prefetchnta 32(%0)\n"
" prefetchnta 64(%0)\n"
" prefetchnta 96(%0)\n"
" prefetchnta 128(%0)\n"
" prefetchnta 160(%0)\n"
" prefetchnta 192(%0)\n"
" prefetchnta 224(%0)\n"
" prefetchnta 256(%0)\n"
" prefetchnta 288(%0)\n"
: : "r" (from) );
if(len >= MIN_LEN)
{
register uintptr_t delta;
/* Align destinition to MMREG_SIZE -boundary */
delta = ((uintptr_t)to)&(AVX_MMREG_SIZE-1);
if(delta)
{
delta=AVX_MMREG_SIZE-delta;
len -= delta;
small_memcpy(to, from, delta);
}
i = len >> 7; /* len/128 */
len&=127;
if(((uintptr_t)from) & 31)
/* if SRC is misaligned */
for(; i>0; i--)
{
__asm__ __volatile__ (
"prefetchnta 320(%0)\n"
"prefetchnta 352(%0)\n"
"prefetchnta 384(%0)\n"
"prefetchnta 416(%0)\n"
"vmovups (%0), %%ymm0\n"
"vmovups 32(%0), %%ymm1\n"
"vmovups 64(%0), %%ymm2\n"
"vmovups 96(%0), %%ymm3\n"
"vmovntps %%ymm0, (%1)\n"
"vmovntps %%ymm1, 32(%1)\n"
"vmovntps %%ymm2, 64(%1)\n"
"vmovntps %%ymm3, 96(%1)\n"
:: "r" (from), "r" (to) : "memory");
from = ((const unsigned char *)from) + 128;
to = ((unsigned char *)to) + 128;
}
else
/*
Only if SRC is aligned on 16-byte boundary.
It allows to use movaps instead of movups, which required data
to be aligned or a general-protection exception (#GP) is generated.
*/
for(; i>0; i--)
{
__asm__ __volatile__ (
"prefetchnta 320(%0)\n"
"prefetchnta 352(%0)\n"
"prefetchnta 384(%0)\n"
"prefetchnta 416(%0)\n"
"vmovaps (%0), %%ymm0\n"
"vmovaps 32(%0), %%ymm1\n"
"vmovaps 64(%0), %%ymm2\n"
"vmovaps 96(%0), %%ymm3\n"
"vmovntps %%ymm0, (%1)\n"
"vmovntps %%ymm1, 32(%1)\n"
"vmovntps %%ymm2, 64(%1)\n"
"vmovntps %%ymm3, 96(%1)\n"
:: "r" (from), "r" (to) : "memory");
from = ((const unsigned char *)from) + 128;
to = ((unsigned char *)to) + 128;
}
/* since movntq is weakly-ordered, a "sfence"
* is needed to become ordered again. */
__asm__ __volatile__ ("sfence":::"memory");
__asm__ __volatile__ ("vzeroupper");
}
/*
* Now do the tail of the block
*/
if(len) linux_kernel_memcpy_impl(to, from, len);
return retval;
}
#endif /* HAVE_AVX */
static void * mmx_memcpy(void * to, const void * from, size_t len)
{
void *retval;
size_t i;
retval = to;
if(len >= MMX1_MIN_LEN)
{
register uintptr_t delta;
/* Align destinition to MMREG_SIZE -boundary */
delta = ((uintptr_t)to)&(MMX_MMREG_SIZE-1);
if(delta)
{
delta=MMX_MMREG_SIZE-delta;
len -= delta;
small_memcpy(to, from, delta);
}
i = len >> 6; /* len/64 */
len&=63;
for(; i>0; i--)
{
__asm__ __volatile__ (
"movq (%0), %%mm0\n"
"movq 8(%0), %%mm1\n"
"movq 16(%0), %%mm2\n"
"movq 24(%0), %%mm3\n"
"movq 32(%0), %%mm4\n"
"movq 40(%0), %%mm5\n"
"movq 48(%0), %%mm6\n"
"movq 56(%0), %%mm7\n"
"movq %%mm0, (%1)\n"
"movq %%mm1, 8(%1)\n"
"movq %%mm2, 16(%1)\n"
"movq %%mm3, 24(%1)\n"
"movq %%mm4, 32(%1)\n"
"movq %%mm5, 40(%1)\n"
"movq %%mm6, 48(%1)\n"
"movq %%mm7, 56(%1)\n"
:: "r" (from), "r" (to) : "memory");
from = ((const unsigned char *)from) + 64;
to = ((unsigned char *)to) + 64;
}
__asm__ __volatile__ ("emms":::"memory");
}
/*
* Now do the tail of the block
*/
if(len) linux_kernel_memcpy_impl(to, from, len);
return retval;
}
static void * mmx2_memcpy(void * to, const void * from, size_t len)
{
void *retval;
size_t i;
retval = to;
/* PREFETCH has effect even for MOVSB instruction ;) */
__asm__ __volatile__ (
" prefetchnta (%0)\n"
" prefetchnta 32(%0)\n"
" prefetchnta 64(%0)\n"
" prefetchnta 96(%0)\n"
" prefetchnta 128(%0)\n"
" prefetchnta 160(%0)\n"
" prefetchnta 192(%0)\n"
" prefetchnta 224(%0)\n"
" prefetchnta 256(%0)\n"
" prefetchnta 288(%0)\n"
: : "r" (from) );
if(len >= MIN_LEN)
{
register uintptr_t delta;
/* Align destinition to MMREG_SIZE -boundary */
delta = ((uintptr_t)to)&(MMX_MMREG_SIZE-1);
if(delta)
{
delta=MMX_MMREG_SIZE-delta;
len -= delta;
small_memcpy(to, from, delta);
}
i = len >> 6; /* len/64 */
len&=63;
for(; i>0; i--)
{
__asm__ __volatile__ (
"prefetchnta 320(%0)\n"
"prefetchnta 352(%0)\n"
"movq (%0), %%mm0\n"
"movq 8(%0), %%mm1\n"
"movq 16(%0), %%mm2\n"
"movq 24(%0), %%mm3\n"
"movq 32(%0), %%mm4\n"
"movq 40(%0), %%mm5\n"
"movq 48(%0), %%mm6\n"
"movq 56(%0), %%mm7\n"
"movntq %%mm0, (%1)\n"
"movntq %%mm1, 8(%1)\n"
"movntq %%mm2, 16(%1)\n"
"movntq %%mm3, 24(%1)\n"
"movntq %%mm4, 32(%1)\n"
"movntq %%mm5, 40(%1)\n"
"movntq %%mm6, 48(%1)\n"
"movntq %%mm7, 56(%1)\n"
:: "r" (from), "r" (to) : "memory");
from = ((const unsigned char *)from) + 64;
to = ((unsigned char *)to) + 64;
}
/* since movntq is weakly-ordered, a "sfence"
* is needed to become ordered again. */
__asm__ __volatile__ ("sfence":::"memory");
__asm__ __volatile__ ("emms":::"memory");
}
/*
* Now do the tail of the block
*/
if(len) linux_kernel_memcpy_impl(to, from, len);
return retval;
}
static void *linux_kernel_memcpy(void *to, const void *from, size_t len) {
return linux_kernel_memcpy_impl(to,from,len);
}
#endif /* _MSC_VER */
#endif /* ARCH_X86 */
static const struct {
const char name[16];
void *(*const function)(void *to, const void *from, size_t len);
uint32_t cpu_require;
} memcpy_method[] =
{
{ "", NULL, 0 },
{ "libc", memcpy, 0 },
#if (defined(ARCH_X86) || defined(ARCH_X86_64)) && !defined(_MSC_VER)
{ "linux kernel", linux_kernel_memcpy, 0 },
{ "MMX ", mmx_memcpy, MM_MMX },
{ "MMXEXT", mmx2_memcpy, MM_MMXEXT },
{ "SSE", sse_memcpy, MM_MMXEXT|MM_SSE },
# ifdef HAVE_AVX
{ "AVX", avx_memcpy, MM_ACCEL_X86_AVX },
# endif /* HAVE_AVX */
#endif /* ARCH_X86 */
#if defined (ARCH_PPC) && !defined (HOST_OS_DARWIN)
{ "ppcasm", ppcasm_memcpy, 0 },
{ "ppcasm_cached", ppcasm_cacheable_memcpy, MM_ACCEL_PPC_CACHE32 },
#endif /* ARCH_PPC && !HOST_OS_DARWIN */
{ "", NULL, 0 }
};
static uint64_t memcpy_timing[sizeof(memcpy_method)/sizeof(memcpy_method[0])] = { 0, };
#ifdef HAVE_POSIX_TIMERS
/* Prefer clock_gettime() where available. */
static int64_t _x_gettime(void)
{
struct timespec tm;
return (clock_gettime (CLOCK_THREAD_CPUTIME_ID, &tm) == -1)
? times (NULL)
: (int64_t)tm.tv_sec * 1e9 + tm.tv_nsec;
}
# define rdtsc(x) _x_gettime()
#elif (defined(ARCH_X86) || defined(ARCH_X86_64)) && defined(HAVE_SYS_TIMES_H)
static int64_t rdtsc(int config_flags)
{
int64_t x;
/* that should prevent us from trying cpuid with old cpus */
if( config_flags & MM_MMX ) {
__asm__ volatile (".byte 0x0f, 0x31" : "=A" (x));
return x;
} else {
return times(NULL);
}
}
#else
static uint64_t rdtsc(int config_flags)
{
/* FIXME: implement an equivalent for using optimized memcpy on other
architectures */
#ifdef HAVE_SYS_TIMES_H
struct tms tp;
return times(&tp);
#else
return clock();
#endif /* HAVE_SYS_TIMES_H */
}
#endif
static void update_fast_memcpy(void *user_data, xine_cfg_entry_t *entry) {
static int config_flags = -1;
xine_t *xine = (xine_t *) user_data;
int method;
config_flags = xine_mm_accel();
method = entry->num_value;
if (method != 0
&& (config_flags & memcpy_method[method].cpu_require) ==
memcpy_method[method].cpu_require ) {
lprintf("using %s memcpy()\n", memcpy_method[method].name );
xine_fast_memcpy = memcpy_method[method].function;
return;
} else {
xprintf(xine, XINE_VERBOSITY_DEBUG, "xine: will probe memcpy on startup\n" );
}
}
#define BUFSIZE 1024*1024
void xine_probe_fast_memcpy(xine_t *xine)
{
uint64_t t;
char *buf1, *buf2;
int i, j, best;
int config_flags = -1;
static const char *const memcpy_methods[] = {
"probe", "libc",
#if (defined(ARCH_X86) || defined(ARCH_X86_64)) && !defined(_MSC_VER)
"kernel", "mmx", "mmxext", "sse",
# ifdef HAVE_AVX
"avx",
# endif /* HAVE_AVX */
#endif
#if defined (ARCH_PPC) && !defined (HOST_OS_DARWIN)
"ppcasm_memcpy", "ppcasm_cacheable_memcpy",
#endif
NULL
};
config_flags = xine_mm_accel();
best = xine->config->register_enum (xine->config, "engine.performance.memcpy_method", 0,
memcpy_methods,
_("memcopy method used by xine"),
_("The copying of large memory blocks is one of the most "
"expensive operations on todays computers. Therefore xine "
"provides various tuned methods to do this copying. "
"Usually, the best method is detected automatically."),
20, update_fast_memcpy, (void *) xine);
/* check if function is configured and valid for this machine */
if( best != 0 &&
best < sizeof(memcpy_methods)/sizeof(memcpy_method[0]) &&
(config_flags & memcpy_method[best].cpu_require) ==
memcpy_method[best].cpu_require ) {
lprintf("using %s memcpy()\n", memcpy_method[best].name );
xine_fast_memcpy = memcpy_method[best].function;
return;
}
best = 0;
xine_fast_memcpy = memcpy;
if( (buf1 = malloc(BUFSIZE)) == NULL )
return;
if( (buf2 = malloc(BUFSIZE)) == NULL ) {
free(buf1);
return;
}
xprintf(xine, XINE_VERBOSITY_LOG, _("Benchmarking memcpy methods (smaller is better):\n"));
/* make sure buffers are present on physical memory */
memset(buf1,0,BUFSIZE);
memset(buf2,0,BUFSIZE);
/* some initial activity to ensure that we're not running slowly :-) */
for(j=0;j<50;j++) {
memcpy_method[1].function(buf2,buf1,BUFSIZE);
memcpy_method[1].function(buf1,buf2,BUFSIZE);
}
for(i=1; memcpy_method[i].name[0]; i++)
{
if( (config_flags & memcpy_method[i].cpu_require) !=
memcpy_method[i].cpu_require )
continue;
t = rdtsc(config_flags);
for(j=0;j<50;j++) {
memcpy_method[i].function(buf2,buf1,BUFSIZE);
memcpy_method[i].function(buf1,buf2,BUFSIZE);
}
t = rdtsc(config_flags) - t;
memcpy_timing[i] = t;
xprintf(xine, XINE_VERBOSITY_LOG, "\t%s memcpy() : %" PRIu64 "\n", memcpy_method[i].name, t);
if( best == 0 || t < memcpy_timing[best] )
best = i;
}
xine->config->update_num (xine->config, "engine.performance.memcpy_method", best);
free(buf1);
free(buf2);
}