A question about ftw.

  • uml

    This package is interesting, since it seems the only one I can find for density estimation using ME principle.

    Let me ask the first question in this forum.
    The current model fitting algorithms include CG, BFGS, LBFGSB, Powell, and Nelder-Mead. How about L-BFGS (unbounded optimization)? Is it implemented or is there any specific concern of not using it here?

    Also, after I installed ftw, all the testing example work correctly, except bergerexamplesimulatedLBFGSB.py. I list the complete error information below (I use python 2.4.3):

    $python bergerexamplesimulatedLBFGSB.py

    Warning: could not load the 'pypar' parallel module.  Running in single-processor mode only.
    Traceback (most recent call last):
      File "bergerexamplesimulatedLBFGSB.py", line 67, in ?
        model.fit(K, approx=True, algorithm='LBFGSB')
      File "/home/wachao/mywork/working/ftw/ftwmaxent-2.0-alpha1/ftwmaxent.py", line 665, in fit
        grad, (K,), bounds=self.bounds, pgtol=self.tol)
      File "/usr/lib/python2.4/site-packages/scipy/optimize/lbfgsb.py", line 179, in fmin_l_bfgs_b
        f[0], g = func_and_grad(x, *args)
    TypeError: func_and_grad() takes exactly 1 argument (2 given)

    Any comments will be highly appreciated.