[3c5609]: base-target-features.lisp-expr Maximize Restore History

Download this file

base-target-features.lisp-expr    296 lines (266 with data), 13.6 kB

;;;; -*- Lisp -*-

;;;; tags which are set during the build process and which end up in
;;;; CL:*FEATURES* in the target SBCL, plus some comments about other
;;;; CL:*FEATURES* tags which have special meaning to SBCL or which
;;;; have a special conventional meaning
;;;;
;;;; Note that the recommended way to customize the features of a
;;;; local build of SBCL is not to edit this file, but instead to
;;;; tweak customize-target-features.lisp. If you define a function
;;;; in customize-target-features.lisp, it will be used to transform
;;;; the target features list after it's read and before it's used.
;;;; E.g. you can use code like this:
;;;;    (lambda (list)
;;;;      (flet ((enable (x) (pushnew x list))
;;;;    	 (disable (x) (setf list (remove x list))))
;;;;        #+nil (enable :sb-show)
;;;;        (enable :sb-after-xc-core)
;;;;        #+nil (disable :sb-doc)
;;;;        list))
;;;; By thus editing a local file (one which is not in the source
;;;; distribution, and which is in .cvsignore) your customizations
;;;; will remain local even if you do things like "cvs update",
;;;; will not show up if you try to submit a patch with "cvs diff",
;;;; and might even stay out of the way if you use other non-CVS-based
;;;; methods to upgrade the files or store your configuration.

;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; This software is derived from the CMU CL system, which was
;;;; written at Carnegie Mellon University and released into the
;;;; public domain. The software is in the public domain and is
;;;; provided with absolutely no warranty. See the COPYING and CREDITS
;;;; files for more information.

(
 ;;
 ;; features present in all builds
 ;;

 ;; our standard
 :ansi-cl :common-lisp
 ;; FIXME: Isn't there a :x3jsomething feature which we should set too?
 ;; No. CLHS says ":x3j13 [...] A conforming implementation might or
 ;; might not contain such a feature." -- CSR, 2002-02-21

 ;; our dialect
 :sbcl

 ;; Douglas Thomas Crosher's conservative generational GC (the only one
 ;; we currently support for X86).
 ;; :gencgc used to be here; CSR moved it into
 ;; local-target-features.lisp-expr via make-config.sh, as alpha,
 ;; sparc and ppc ports don't currently support it. -- CSR, 2002-02-21

 ;; We're running under a UNIX. This is sort of redundant, and it was also
 ;; sort of redundant under CMU CL, which we inherited it from: neither SBCL
 ;; nor CMU CL supports anything but UNIX (and "technically not UNIX"es
 ;; such as *BSD and Linux). But someday, maybe we might, and in that case
 ;; we'd presumably remove this, so its presence conveys the information
 ;; that the system isn't one which follows such a change.
 :unix

 ;;
 ;; features present in this particular build
 ;;

 ;; Setting this enables the compilation of documentation strings
 ;; from the system sources into the target Lisp executable.
 ;; Traditional Common Lisp folk will want this option set.
 ;; I (WHN) made it optional because I came to Common Lisp from
 ;; C++ through Scheme, so I'm accustomed to asking
 ;; Emacs about things that I'm curious about instead of asking
 ;; the executable I'm running.
 :sb-doc

 ;; Do regression and other tests when building the system. You might
 ;; or might not want this if you're not a developer, depending on how
 ;; paranoid you are. You probably do want it if you are a developer.
 ;; This test does not affect the target system (in much the same way
 ;; as :sb-after-xc-core, below).
 :sb-test

 ;; Make more debugging information available (for debugging SBCL
 ;; itself). If you aren't hacking or troubleshooting SBCL itself,
 ;; you probably don't want this set.
 ;;
 ;; At least two varieties of debugging information are enabled by this
 ;; option:
 ;;   * SBCL is compiled with a higher level of OPTIMIZE DEBUG, so that
 ;;     the debugger can tell more about the state of the system.
 ;;   * Various code to print debugging messages, and similar debugging code,
 ;;     is compiled only when this feature is present.
 ;;
 ;; Note that the extra information recorded by the compiler at
 ;; this higher level of OPTIMIZE DEBUG includes the source location
 ;; forms. In order for the debugger to use this information, it has to
 ;; re-READ the source file. In an ordinary installation of SBCL, this
 ;; re-READing may not work very well, for either of two reasons:
 ;;   * The sources aren't present on the system in the same location that
 ;;     they were on the system where SBCL was compiled.
 ;;   * SBCL is using the standard readtable, without the added hackage
 ;;     which allows it to handle things like target features.
 ;; If you want to be able to use the extra debugging information,
 ;; therefore, be sure to keep the sources around, and run with the
 ;; readtable configured so that the system sources can be read.
 ; :sb-show

 ;; Build SBCL with the old CMU CL low level debugger, "ldb". If are
 ;; aren't messing with SBCL at a very low level (e.g., trying to
 ;; diagnose GC problems, or trying to debug assembly code for a port
 ;; to a new CPU) you shouldn't need this.
 ; :sb-ldb

 ;; This isn't really a target Lisp feature at all, but controls
 ;; whether the build process produces an after-xc.core file. This
 ;; can be useful for shortening the edit/compile/debug cycle when
 ;; you modify SBCL's own source code, as in slam.sh. Otherwise
 ;; you don't need it.
 ; :sb-after-xc-core

 ;; Enable extra debugging output in the assem.lisp assembler/scheduler
 ;; code. (This is the feature which was called :DEBUG in the
 ;; original CMU CL code.)
 ; :sb-show-assem

 ;; Setting this makes SBCL more "fluid", i.e. more amenable to
 ;; modification at runtime, by suppressing various INLINE declarations,
 ;; compiler macro definitions, FREEZE-TYPE declarations; and by
 ;; suppressing various burning-our-ships-behind-us actions after
 ;; initialization is complete; and so forth. This tends to clobber the
 ;; performance of the system, so unless you have some special need for
 ;; this when hacking SBCL itself, you don't want this set.
 ; :sb-fluid

 ;; Enable code for collecting statistics on usage of various operations,
 ;; useful for performance tuning of the SBCL system itself. This code
 ;; is probably pretty stale (having not been tested since the fork from
 ;; base CMU CL) but might nonetheless be a useful starting point for
 ;; anyone who wants to collect such statistics in the future.
 ; :sb-dyncount

 ;; Peter Van Eynde's increase-bulletproofness code for CMU CL
 ;;
 ;; Some of the code which was #+high-security before the fork has now
 ;; been either made unconditional, deleted, or rewritten into
 ;; unrecognizability, but some remains. What remains is not maintained
 ;; or tested in current SBCL, but I haven't gone out of my way to
 ;; break it, either. 
 ;;
 ; :high-security
 ; :high-security-support

 ;; low-level thread primitives support
 ;;
 ;; As of SBCL 0.8,  this is only supposed to work in x86 Linux, on which
 ;; system it's implemented using clone(2) and the %fs segment register.
 ;; Note that no consistent effort to audit the SBCL library code for
 ;; thread safety has been performed, so caveat executor.
 ; :sb-thread

 ;; Kernel support for futexes (so-called "fast userspace mutexes") is
 ;; available in Linux 2.6 and some versions of 2.4 (Red Hat vendor
 ;; kernels, possibly other vendors too).  We can take advantage of
 ;; these to do faster and probably more reliable mutex and condition
 ;; variable support.  An SBCL built with this feature will fall back
 ;; to the old system if the futex() syscall is not available at
 ;; runtime
 ; :sb-futex

 ;; Support for detection of unportable code (when applied to the
 ;; COMMON-LISP package, or SBCL-internal pacakges) or bad-neighbourly
 ;; code (when applied to user-level packages), relating to material
 ;; alteration to packages or to bindings in symbols in packages.
 :sb-package-locks
 
 ;; This affects the definition of a lot of things in bignum.lisp. It
 ;; doesn't seem to be documented anywhere what systems it might apply
 ;; to. It doesn't seem to be needed for X86 systems anyway.
 ; :32x16-divide

 ;; This is set in classic CMU CL, and presumably there it means
 ;; that the floating point arithmetic implementation
 ;; conforms to IEEE's standard. Here it definitely means that the
 ;; floating point arithmetic implementation conforms to IEEE's standard.
 ;; I (WHN 19990702) haven't tried to verify
 ;; that it does conform, but it should at least mostly conform (because
 ;; the underlying x86 hardware tries).
 :ieee-floating-point

 ;; CMU CL had, and we inherited, code to support 80-bit LONG-FLOAT on the x86
 ;; architecture. Nothing has been done to actively destroy the long float
 ;; support, but it hasn't been thoroughly maintained, and needs at least
 ;; some maintenance before it will work. (E.g. the LONG-FLOAT-only parts of
 ;; genesis are still implemented in terms of unportable CMU CL functions
 ;; which are not longer available at genesis time in SBCL.) A deeper
 ;; problem is SBCL's bootstrap process implicitly assumes that the
 ;; cross-compilation host will be able to make the same distinctions
 ;; between floating point types that it does. This assumption is
 ;; fundamentally sleazy, even though in practice it's unlikely to break down
 ;; w.r.t. distinguishing SINGLE-FLOAT from DOUBLE-FLOAT; it's much more
 ;; likely to break down w.r.t. distinguishing DOUBLE-FLOAT from LONG-FLOAT.
 ;; Still it's likely to be quite doable to get LONG-FLOAT support working
 ;; again, if anyone's sufficiently motivated.
 ; :long-float

 ;;
 ;; miscellaneous notes on other things which could have special significance
 ;; in the *FEATURES* list
 ;;

 ;; Any target feature which affects binary compatibility of fasl files
 ;; needs to be recorded in *FEATURES-POTENTIALLY-AFFECTING-FASL-FORMAT*
 ;; (elsewhere).

 ;; notes on the :NIL and :IGNORE features:
 ;;
 ;; #+NIL is used to comment out forms. Occasionally #+IGNORE is used
 ;; for this too. So don't use :NIL or :IGNORE as the names of features..

 ;; notes on :SB-XC and :SB-XC-HOST features (which aren't controlled by this
 ;; file, but are instead temporarily pushed onto *FEATURES* or
 ;; *TARGET-FEATURES* during some phases of cross-compilation):
 ;;
 ;; :SB-XC-HOST stands for "cross-compilation host" and is in *FEATURES*
 ;; during the first phase of cross-compilation bootstrapping, when the
 ;; host Lisp is being used to compile the cross-compiler.
 ;;
 ;; :SB-XC stands for "cross compiler", and is in *FEATURES* during the second
 ;; phase of cross-compilation bootstrapping, when the cross-compiler is
 ;; being used to create the first target Lisp.

 ;; notes on the :SB-ASSEMBLING feature (which isn't controlled by
 ;; this file):
 ;;
 ;; This is a flag for whether we're in the assembler. It's
 ;; temporarily pushed onto the *FEATURES* list in the setup for
 ;; the ASSEMBLE-FILE function. It would be a bad idea
 ;; to use it as a name for a permanent feature.

 ;; notes on local features (which are set automatically by the
 ;; configuration script, and should not be set here unless you
 ;; really, really know what you're doing):
 ;; 
 ;; machine architecture features:
 ;;   :x86
 ;;      any Intel 386 or better, or compatibles like the AMD K6 or K7
 ;;   :alpha
 ;;      DEC/Compaq Alpha CPU
 ;;   :sparc
 ;;      any Sun UltraSPARC (possibly also non-Ultras -- currently untested)
 ;;   :ppc
 ;;      any PowerPC CPU
 ;;   :hppa
 ;;      any PA-RISC CPU
 ;;   :mips
 ;;      any MIPS CPU (in little-endian mode with :little-endian -- currently
 ;;      untested)
 ;;   
 ;; (CMU CL also had a :pentium feature, which affected the definition
 ;; of some floating point vops. It was present but not enabled or
 ;; documented in the CMU CL code that SBCL is derived from, and has
 ;; now been moved to the backend-subfeatures mechanism.)
 ;;
 ;; properties derived from the machine architecture
 ;;   :control-stack-grows-downward-not-upward
 ;;     On the X86, the Lisp control stack grows downward. On the
 ;;     other supported CPU architectures as of sbcl-0.7.1.40, the
 ;;     system stack grows upward. 
 ;;   Note that there are other stack-related differences between the
 ;;   X86 port and the other ports. E.g. on the X86, the Lisp control
 ;;   stack coincides with the C stack, meaning that on the X86 there's
 ;;   stuff on the control stack that the Lisp-level debugger doesn't
 ;;   understand very well. As of sbcl-0.7.1.40 things like that are
 ;;   just parameterized by #!+X86, but it'd probably be better to
 ;;   use new flags like :CONTROL-STACK-CONTAINS-C-STACK.
 ;;
 ;; operating system features:
 ;;   :linux   = We're intended to run under some version of Linux.
 ;;   :bsd     = We're intended to run under some version of BSD Unix. (This
 ;;              is not exclusive with the features which indicate which
 ;;              particular version of BSD we're intended to run under.)
 ;;   :freebsd = We're intended to run under FreeBSD.
 ;;   :openbsd = We're intended to run under OpenBSD.
 ;;   :netbsd  = We're intended to run under NetBSD.
 ;;   :sunos   = We're intended to run under Solaris user environment
 ;;              with the SunOS kernel.
 ;;   :osf1    = We're intended to run under Tru64 (aka Digital Unix
 ;;              aka OSF/1).
 ;; (No others are supported by SBCL as of 0.7.5, but :hpux or :irix
 ;; support could be ported from CMU CL if anyone is sufficiently
 ;; motivated to do so, and it'd even be possible, though harder, to
 ;; port the system to Microsoft Windows or MacOS X.)
 )