[d1873c]: src / runtime / gencgc.c Maximize Restore History

Download this file

gencgc.c    4952 lines (4297 with data), 174.7 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
/*
* GENerational Conservative Garbage Collector for SBCL
*/
/*
* This software is part of the SBCL system. See the README file for
* more information.
*
* This software is derived from the CMU CL system, which was
* written at Carnegie Mellon University and released into the
* public domain. The software is in the public domain and is
* provided with absolutely no warranty. See the COPYING and CREDITS
* files for more information.
*/
/*
* For a review of garbage collection techniques (e.g. generational
* GC) and terminology (e.g. "scavenging") see Paul R. Wilson,
* "Uniprocessor Garbage Collection Techniques". As of 20000618, this
* had been accepted for _ACM Computing Surveys_ and was available
* as a PostScript preprint through
* <http://www.cs.utexas.edu/users/oops/papers.html>
* as
* <ftp://ftp.cs.utexas.edu/pub/garbage/bigsurv.ps>.
*/
#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <errno.h>
#include <string.h>
#include "sbcl.h"
#include "runtime.h"
#include "os.h"
#include "interr.h"
#include "globals.h"
#include "interrupt.h"
#include "validate.h"
#include "lispregs.h"
#include "arch.h"
#include "gc.h"
#include "gc-internal.h"
#include "thread.h"
#include "alloc.h"
#include "genesis/vector.h"
#include "genesis/weak-pointer.h"
#include "genesis/fdefn.h"
#include "genesis/simple-fun.h"
#include "save.h"
#include "genesis/hash-table.h"
#include "genesis/instance.h"
#include "genesis/layout.h"
#include "gencgc.h"
#if defined(LUTEX_WIDETAG)
#include "pthread-lutex.h"
#endif
/* forward declarations */
page_index_t gc_find_freeish_pages(long *restart_page_ptr, long nbytes,
int page_type_flag);
/*
* GC parameters
*/
/* Generations 0-5 are normal collected generations, 6 is only used as
* scratch space by the collector, and should never get collected.
*/
enum {
HIGHEST_NORMAL_GENERATION = 5,
PSEUDO_STATIC_GENERATION,
SCRATCH_GENERATION,
NUM_GENERATIONS
};
/* Should we use page protection to help avoid the scavenging of pages
* that don't have pointers to younger generations? */
boolean enable_page_protection = 1;
/* the minimum size (in bytes) for a large object*/
long large_object_size = 4 * PAGE_BYTES;
/*
* debugging
*/
/* the verbosity level. All non-error messages are disabled at level 0;
* and only a few rare messages are printed at level 1. */
#ifdef QSHOW
boolean gencgc_verbose = 1;
#else
boolean gencgc_verbose = 0;
#endif
/* FIXME: At some point enable the various error-checking things below
* and see what they say. */
/* We hunt for pointers to old-space, when GCing generations >= verify_gen.
* Set verify_gens to HIGHEST_NORMAL_GENERATION + 1 to disable this kind of
* check. */
generation_index_t verify_gens = HIGHEST_NORMAL_GENERATION + 1;
/* Should we do a pre-scan verify of generation 0 before it's GCed? */
boolean pre_verify_gen_0 = 0;
/* Should we check for bad pointers after gc_free_heap is called
* from Lisp PURIFY? */
boolean verify_after_free_heap = 0;
/* Should we print a note when code objects are found in the dynamic space
* during a heap verify? */
boolean verify_dynamic_code_check = 0;
/* Should we check code objects for fixup errors after they are transported? */
boolean check_code_fixups = 0;
/* Should we check that newly allocated regions are zero filled? */
boolean gencgc_zero_check = 0;
/* Should we check that the free space is zero filled? */
boolean gencgc_enable_verify_zero_fill = 0;
/* Should we check that free pages are zero filled during gc_free_heap
* called after Lisp PURIFY? */
boolean gencgc_zero_check_during_free_heap = 0;
/* When loading a core, don't do a full scan of the memory for the
* memory region boundaries. (Set to true by coreparse.c if the core
* contained a pagetable entry).
*/
boolean gencgc_partial_pickup = 0;
/* If defined, free pages are read-protected to ensure that nothing
* accesses them.
*/
/* #define READ_PROTECT_FREE_PAGES */
/*
* GC structures and variables
*/
/* the total bytes allocated. These are seen by Lisp DYNAMIC-USAGE. */
unsigned long bytes_allocated = 0;
unsigned long auto_gc_trigger = 0;
/* the source and destination generations. These are set before a GC starts
* scavenging. */
generation_index_t from_space;
generation_index_t new_space;
/* Set to 1 when in GC */
boolean gc_active_p = 0;
/* should the GC be conservative on stack. If false (only right before
* saving a core), don't scan the stack / mark pages dont_move. */
static boolean conservative_stack = 1;
/* An array of page structures is allocated on gc initialization.
* This helps quickly map between an address its page structure.
* page_table_pages is set from the size of the dynamic space. */
page_index_t page_table_pages;
struct page *page_table;
static inline boolean page_allocated_p(page_index_t page) {
return (page_table[page].allocated != FREE_PAGE_FLAG);
}
static inline boolean page_no_region_p(page_index_t page) {
return !(page_table[page].allocated & OPEN_REGION_PAGE_FLAG);
}
static inline boolean page_allocated_no_region_p(page_index_t page) {
return ((page_table[page].allocated & (UNBOXED_PAGE_FLAG | BOXED_PAGE_FLAG))
&& page_no_region_p(page));
}
static inline boolean page_free_p(page_index_t page) {
return (page_table[page].allocated == FREE_PAGE_FLAG);
}
static inline boolean page_boxed_p(page_index_t page) {
return (page_table[page].allocated & BOXED_PAGE_FLAG);
}
static inline boolean code_page_p(page_index_t page) {
return (page_table[page].allocated & CODE_PAGE_FLAG);
}
static inline boolean page_boxed_no_region_p(page_index_t page) {
return page_boxed_p(page) && page_no_region_p(page);
}
static inline boolean page_unboxed_p(page_index_t page) {
/* Both flags set == boxed code page */
return ((page_table[page].allocated & UNBOXED_PAGE_FLAG)
&& !page_boxed_p(page));
}
static inline boolean protect_page_p(page_index_t page, generation_index_t generation) {
return (page_boxed_no_region_p(page)
&& (page_table[page].bytes_used != 0)
&& !page_table[page].dont_move
&& (page_table[page].gen == generation));
}
/* To map addresses to page structures the address of the first page
* is needed. */
static void *heap_base = NULL;
/* Calculate the start address for the given page number. */
inline void *
page_address(page_index_t page_num)
{
return (heap_base + (page_num * PAGE_BYTES));
}
/* Calculate the address where the allocation region associated with
* the page starts. */
static inline void *
page_region_start(page_index_t page_index)
{
return page_address(page_index)-page_table[page_index].region_start_offset;
}
/* Find the page index within the page_table for the given
* address. Return -1 on failure. */
inline page_index_t
find_page_index(void *addr)
{
if (addr >= heap_base) {
page_index_t index = ((pointer_sized_uint_t)addr -
(pointer_sized_uint_t)heap_base) / PAGE_BYTES;
if (index < page_table_pages)
return (index);
}
return (-1);
}
static size_t
npage_bytes(long npages)
{
gc_assert(npages>=0);
return ((unsigned long)npages)*PAGE_BYTES;
}
/* Check that X is a higher address than Y and return offset from Y to
* X in bytes. */
static inline
size_t void_diff(void *x, void *y)
{
gc_assert(x >= y);
return (pointer_sized_uint_t)x - (pointer_sized_uint_t)y;
}
/* a structure to hold the state of a generation */
struct generation {
/* the first page that gc_alloc() checks on its next call */
page_index_t alloc_start_page;
/* the first page that gc_alloc_unboxed() checks on its next call */
page_index_t alloc_unboxed_start_page;
/* the first page that gc_alloc_large (boxed) considers on its next
* call. (Although it always allocates after the boxed_region.) */
page_index_t alloc_large_start_page;
/* the first page that gc_alloc_large (unboxed) considers on its
* next call. (Although it always allocates after the
* current_unboxed_region.) */
page_index_t alloc_large_unboxed_start_page;
/* the bytes allocated to this generation */
unsigned long bytes_allocated;
/* the number of bytes at which to trigger a GC */
unsigned long gc_trigger;
/* to calculate a new level for gc_trigger */
unsigned long bytes_consed_between_gc;
/* the number of GCs since the last raise */
int num_gc;
/* the average age after which a GC will raise objects to the
* next generation */
int trigger_age;
/* the cumulative sum of the bytes allocated to this generation. It is
* cleared after a GC on this generations, and update before new
* objects are added from a GC of a younger generation. Dividing by
* the bytes_allocated will give the average age of the memory in
* this generation since its last GC. */
unsigned long cum_sum_bytes_allocated;
/* a minimum average memory age before a GC will occur helps
* prevent a GC when a large number of new live objects have been
* added, in which case a GC could be a waste of time */
double min_av_mem_age;
/* A linked list of lutex structures in this generation, used for
* implementing lutex finalization. */
#ifdef LUTEX_WIDETAG
struct lutex *lutexes;
#else
void *lutexes;
#endif
};
/* an array of generation structures. There needs to be one more
* generation structure than actual generations as the oldest
* generation is temporarily raised then lowered. */
struct generation generations[NUM_GENERATIONS];
/* the oldest generation that is will currently be GCed by default.
* Valid values are: 0, 1, ... HIGHEST_NORMAL_GENERATION
*
* The default of HIGHEST_NORMAL_GENERATION enables GC on all generations.
*
* Setting this to 0 effectively disables the generational nature of
* the GC. In some applications generational GC may not be useful
* because there are no long-lived objects.
*
* An intermediate value could be handy after moving long-lived data
* into an older generation so an unnecessary GC of this long-lived
* data can be avoided. */
generation_index_t gencgc_oldest_gen_to_gc = HIGHEST_NORMAL_GENERATION;
/* The maximum free page in the heap is maintained and used to update
* ALLOCATION_POINTER which is used by the room function to limit its
* search of the heap. XX Gencgc obviously needs to be better
* integrated with the Lisp code. */
page_index_t last_free_page;
#ifdef LISP_FEATURE_SB_THREAD
/* This lock is to prevent multiple threads from simultaneously
* allocating new regions which overlap each other. Note that the
* majority of GC is single-threaded, but alloc() may be called from
* >1 thread at a time and must be thread-safe. This lock must be
* seized before all accesses to generations[] or to parts of
* page_table[] that other threads may want to see */
static pthread_mutex_t free_pages_lock = PTHREAD_MUTEX_INITIALIZER;
/* This lock is used to protect non-thread-local allocation. */
static pthread_mutex_t allocation_lock = PTHREAD_MUTEX_INITIALIZER;
#endif
/*
* miscellaneous heap functions
*/
/* Count the number of pages which are write-protected within the
* given generation. */
static long
count_write_protect_generation_pages(generation_index_t generation)
{
page_index_t i;
unsigned long count = 0;
for (i = 0; i < last_free_page; i++)
if (page_allocated_p(i)
&& (page_table[i].gen == generation)
&& (page_table[i].write_protected == 1))
count++;
return count;
}
/* Count the number of pages within the given generation. */
static long
count_generation_pages(generation_index_t generation)
{
page_index_t i;
long count = 0;
for (i = 0; i < last_free_page; i++)
if (page_allocated_p(i)
&& (page_table[i].gen == generation))
count++;
return count;
}
#ifdef QSHOW
static long
count_dont_move_pages(void)
{
page_index_t i;
long count = 0;
for (i = 0; i < last_free_page; i++) {
if (page_allocated_p(i)
&& (page_table[i].dont_move != 0)) {
++count;
}
}
return count;
}
#endif /* QSHOW */
/* Work through the pages and add up the number of bytes used for the
* given generation. */
static unsigned long
count_generation_bytes_allocated (generation_index_t gen)
{
page_index_t i;
unsigned long result = 0;
for (i = 0; i < last_free_page; i++) {
if (page_allocated_p(i)
&& (page_table[i].gen == gen))
result += page_table[i].bytes_used;
}
return result;
}
/* Return the average age of the memory in a generation. */
static double
gen_av_mem_age(generation_index_t gen)
{
if (generations[gen].bytes_allocated == 0)
return 0.0;
return
((double)generations[gen].cum_sum_bytes_allocated)
/ ((double)generations[gen].bytes_allocated);
}
/* The verbose argument controls how much to print: 0 for normal
* level of detail; 1 for debugging. */
static void
print_generation_stats(int verbose) /* FIXME: should take FILE argument */
{
generation_index_t i, gens;
#if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
#define FPU_STATE_SIZE 27
int fpu_state[FPU_STATE_SIZE];
#elif defined(LISP_FEATURE_PPC)
#define FPU_STATE_SIZE 32
long long fpu_state[FPU_STATE_SIZE];
#endif
/* This code uses the FP instructions which may be set up for Lisp
* so they need to be saved and reset for C. */
fpu_save(fpu_state);
/* highest generation to print */
if (verbose)
gens = SCRATCH_GENERATION;
else
gens = PSEUDO_STATIC_GENERATION;
/* Print the heap stats. */
fprintf(stderr,
" Gen StaPg UbSta LaSta LUbSt Boxed Unboxed LB LUB !move Alloc Waste Trig WP GCs Mem-age\n");
for (i = 0; i < gens; i++) {
page_index_t j;
long boxed_cnt = 0;
long unboxed_cnt = 0;
long large_boxed_cnt = 0;
long large_unboxed_cnt = 0;
long pinned_cnt=0;
for (j = 0; j < last_free_page; j++)
if (page_table[j].gen == i) {
/* Count the number of boxed pages within the given
* generation. */
if (page_boxed_p(j)) {
if (page_table[j].large_object)
large_boxed_cnt++;
else
boxed_cnt++;
}
if(page_table[j].dont_move) pinned_cnt++;
/* Count the number of unboxed pages within the given
* generation. */
if (page_unboxed_p(j)) {
if (page_table[j].large_object)
large_unboxed_cnt++;
else
unboxed_cnt++;
}
}
gc_assert(generations[i].bytes_allocated
== count_generation_bytes_allocated(i));
fprintf(stderr,
" %1d: %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %5ld %8ld %5ld %8ld %4ld %3d %7.4f\n",
i,
generations[i].alloc_start_page,
generations[i].alloc_unboxed_start_page,
generations[i].alloc_large_start_page,
generations[i].alloc_large_unboxed_start_page,
boxed_cnt,
unboxed_cnt,
large_boxed_cnt,
large_unboxed_cnt,
pinned_cnt,
generations[i].bytes_allocated,
(npage_bytes(count_generation_pages(i))
- generations[i].bytes_allocated),
generations[i].gc_trigger,
count_write_protect_generation_pages(i),
generations[i].num_gc,
gen_av_mem_age(i));
}
fprintf(stderr," Total bytes allocated = %lu\n", bytes_allocated);
fprintf(stderr," Dynamic-space-size bytes = %u\n", dynamic_space_size);
fpu_restore(fpu_state);
}
#if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
void fast_bzero(void*, size_t); /* in <arch>-assem.S */
#endif
/* Zero the pages from START to END (inclusive), but use mmap/munmap instead
* if zeroing it ourselves, i.e. in practice give the memory back to the
* OS. Generally done after a large GC.
*/
void zero_pages_with_mmap(page_index_t start, page_index_t end) {
int i;
void *addr = page_address(start), *new_addr;
size_t length = npage_bytes(1+end-start);
if (start > end)
return;
os_invalidate(addr, length);
new_addr = os_validate(addr, length);
if (new_addr == NULL || new_addr != addr) {
lose("remap_free_pages: page moved, 0x%08x ==> 0x%08x",
start, new_addr);
}
for (i = start; i <= end; i++) {
page_table[i].need_to_zero = 0;
}
}
/* Zero the pages from START to END (inclusive). Generally done just after
* a new region has been allocated.
*/
static void
zero_pages(page_index_t start, page_index_t end) {
if (start > end)
return;
#if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
fast_bzero(page_address(start), npage_bytes(1+end-start));
#else
bzero(page_address(start), npage_bytes(1+end-start));
#endif
}
/* Zero the pages from START to END (inclusive), except for those
* pages that are known to already zeroed. Mark all pages in the
* ranges as non-zeroed.
*/
static void
zero_dirty_pages(page_index_t start, page_index_t end) {
page_index_t i;
for (i = start; i <= end; i++) {
if (page_table[i].need_to_zero == 1) {
zero_pages(start, end);
break;
}
}
for (i = start; i <= end; i++) {
page_table[i].need_to_zero = 1;
}
}
/*
* To support quick and inline allocation, regions of memory can be
* allocated and then allocated from with just a free pointer and a
* check against an end address.
*
* Since objects can be allocated to spaces with different properties
* e.g. boxed/unboxed, generation, ages; there may need to be many
* allocation regions.
*
* Each allocation region may start within a partly used page. Many
* features of memory use are noted on a page wise basis, e.g. the
* generation; so if a region starts within an existing allocated page
* it must be consistent with this page.
*
* During the scavenging of the newspace, objects will be transported
* into an allocation region, and pointers updated to point to this
* allocation region. It is possible that these pointers will be
* scavenged again before the allocation region is closed, e.g. due to
* trans_list which jumps all over the place to cleanup the list. It
* is important to be able to determine properties of all objects
* pointed to when scavenging, e.g to detect pointers to the oldspace.
* Thus it's important that the allocation regions have the correct
* properties set when allocated, and not just set when closed. The
* region allocation routines return regions with the specified
* properties, and grab all the pages, setting their properties
* appropriately, except that the amount used is not known.
*
* These regions are used to support quicker allocation using just a
* free pointer. The actual space used by the region is not reflected
* in the pages tables until it is closed. It can't be scavenged until
* closed.
*
* When finished with the region it should be closed, which will
* update the page tables for the actual space used returning unused
* space. Further it may be noted in the new regions which is
* necessary when scavenging the newspace.
*
* Large objects may be allocated directly without an allocation
* region, the page tables are updated immediately.
*
* Unboxed objects don't contain pointers to other objects and so
* don't need scavenging. Further they can't contain pointers to
* younger generations so WP is not needed. By allocating pages to
* unboxed objects the whole page never needs scavenging or
* write-protecting. */
/* We are only using two regions at present. Both are for the current
* newspace generation. */
struct alloc_region boxed_region;
struct alloc_region unboxed_region;
/* The generation currently being allocated to. */
static generation_index_t gc_alloc_generation;
static inline page_index_t
generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large)
{
if (large) {
if (UNBOXED_PAGE_FLAG == page_type_flag) {
return generations[generation].alloc_large_unboxed_start_page;
} else if (BOXED_PAGE_FLAG & page_type_flag) {
/* Both code and data. */
return generations[generation].alloc_large_start_page;
} else {
lose("bad page type flag: %d", page_type_flag);
}
} else {
if (UNBOXED_PAGE_FLAG == page_type_flag) {
return generations[generation].alloc_unboxed_start_page;
} else if (BOXED_PAGE_FLAG & page_type_flag) {
/* Both code and data. */
return generations[generation].alloc_start_page;
} else {
lose("bad page_type_flag: %d", page_type_flag);
}
}
}
static inline void
set_generation_alloc_start_page(generation_index_t generation, int page_type_flag, int large,
page_index_t page)
{
if (large) {
if (UNBOXED_PAGE_FLAG == page_type_flag) {
generations[generation].alloc_large_unboxed_start_page = page;
} else if (BOXED_PAGE_FLAG & page_type_flag) {
/* Both code and data. */
generations[generation].alloc_large_start_page = page;
} else {
lose("bad page type flag: %d", page_type_flag);
}
} else {
if (UNBOXED_PAGE_FLAG == page_type_flag) {
generations[generation].alloc_unboxed_start_page = page;
} else if (BOXED_PAGE_FLAG & page_type_flag) {
/* Both code and data. */
generations[generation].alloc_start_page = page;
} else {
lose("bad page type flag: %d", page_type_flag);
}
}
}
/* Find a new region with room for at least the given number of bytes.
*
* It starts looking at the current generation's alloc_start_page. So
* may pick up from the previous region if there is enough space. This
* keeps the allocation contiguous when scavenging the newspace.
*
* The alloc_region should have been closed by a call to
* gc_alloc_update_page_tables(), and will thus be in an empty state.
*
* To assist the scavenging functions write-protected pages are not
* used. Free pages should not be write-protected.
*
* It is critical to the conservative GC that the start of regions be
* known. To help achieve this only small regions are allocated at a
* time.
*
* During scavenging, pointers may be found to within the current
* region and the page generation must be set so that pointers to the
* from space can be recognized. Therefore the generation of pages in
* the region are set to gc_alloc_generation. To prevent another
* allocation call using the same pages, all the pages in the region
* are allocated, although they will initially be empty.
*/
static void
gc_alloc_new_region(long nbytes, int page_type_flag, struct alloc_region *alloc_region)
{
page_index_t first_page;
page_index_t last_page;
unsigned long bytes_found;
page_index_t i;
int ret;
/*
FSHOW((stderr,
"/alloc_new_region for %d bytes from gen %d\n",
nbytes, gc_alloc_generation));
*/
/* Check that the region is in a reset state. */
gc_assert((alloc_region->first_page == 0)
&& (alloc_region->last_page == -1)
&& (alloc_region->free_pointer == alloc_region->end_addr));
ret = thread_mutex_lock(&free_pages_lock);
gc_assert(ret == 0);
first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0);
last_page=gc_find_freeish_pages(&first_page, nbytes, page_type_flag);
bytes_found=(PAGE_BYTES - page_table[first_page].bytes_used)
+ npage_bytes(last_page-first_page);
/* Set up the alloc_region. */
alloc_region->first_page = first_page;
alloc_region->last_page = last_page;
alloc_region->start_addr = page_table[first_page].bytes_used
+ page_address(first_page);
alloc_region->free_pointer = alloc_region->start_addr;
alloc_region->end_addr = alloc_region->start_addr + bytes_found;
/* Set up the pages. */
/* The first page may have already been in use. */
if (page_table[first_page].bytes_used == 0) {
page_table[first_page].allocated = page_type_flag;
page_table[first_page].gen = gc_alloc_generation;
page_table[first_page].large_object = 0;
page_table[first_page].region_start_offset = 0;
}
gc_assert(page_table[first_page].allocated == page_type_flag);
page_table[first_page].allocated |= OPEN_REGION_PAGE_FLAG;
gc_assert(page_table[first_page].gen == gc_alloc_generation);
gc_assert(page_table[first_page].large_object == 0);
for (i = first_page+1; i <= last_page; i++) {
page_table[i].allocated = page_type_flag;
page_table[i].gen = gc_alloc_generation;
page_table[i].large_object = 0;
/* This may not be necessary for unboxed regions (think it was
* broken before!) */
page_table[i].region_start_offset =
void_diff(page_address(i),alloc_region->start_addr);
page_table[i].allocated |= OPEN_REGION_PAGE_FLAG ;
}
/* Bump up last_free_page. */
if (last_page+1 > last_free_page) {
last_free_page = last_page+1;
/* do we only want to call this on special occasions? like for
* boxed_region? */
set_alloc_pointer((lispobj)page_address(last_free_page));
}
ret = thread_mutex_unlock(&free_pages_lock);
gc_assert(ret == 0);
#ifdef READ_PROTECT_FREE_PAGES
os_protect(page_address(first_page),
npage_bytes(1+last_page-first_page),
OS_VM_PROT_ALL);
#endif
/* If the first page was only partial, don't check whether it's
* zeroed (it won't be) and don't zero it (since the parts that
* we're interested in are guaranteed to be zeroed).
*/
if (page_table[first_page].bytes_used) {
first_page++;
}
zero_dirty_pages(first_page, last_page);
/* we can do this after releasing free_pages_lock */
if (gencgc_zero_check) {
long *p;
for (p = (long *)alloc_region->start_addr;
p < (long *)alloc_region->end_addr; p++) {
if (*p != 0) {
/* KLUDGE: It would be nice to use %lx and explicit casts
* (long) in code like this, so that it is less likely to
* break randomly when running on a machine with different
* word sizes. -- WHN 19991129 */
lose("The new region at %x is not zero (start=%p, end=%p).\n",
p, alloc_region->start_addr, alloc_region->end_addr);
}
}
}
}
/* If the record_new_objects flag is 2 then all new regions created
* are recorded.
*
* If it's 1 then then it is only recorded if the first page of the
* current region is <= new_areas_ignore_page. This helps avoid
* unnecessary recording when doing full scavenge pass.
*
* The new_object structure holds the page, byte offset, and size of
* new regions of objects. Each new area is placed in the array of
* these structures pointer to by new_areas. new_areas_index holds the
* offset into new_areas.
*
* If new_area overflows NUM_NEW_AREAS then it stops adding them. The
* later code must detect this and handle it, probably by doing a full
* scavenge of a generation. */
#define NUM_NEW_AREAS 512
static int record_new_objects = 0;
static page_index_t new_areas_ignore_page;
struct new_area {
page_index_t page;
size_t offset;
size_t size;
};
static struct new_area (*new_areas)[];
static long new_areas_index;
long max_new_areas;
/* Add a new area to new_areas. */
static void
add_new_area(page_index_t first_page, size_t offset, size_t size)
{
unsigned long new_area_start,c;
long i;
/* Ignore if full. */
if (new_areas_index >= NUM_NEW_AREAS)
return;
switch (record_new_objects) {
case 0:
return;
case 1:
if (first_page > new_areas_ignore_page)
return;
break;
case 2:
break;
default:
gc_abort();
}
new_area_start = npage_bytes(first_page) + offset;
/* Search backwards for a prior area that this follows from. If
found this will save adding a new area. */
for (i = new_areas_index-1, c = 0; (i >= 0) && (c < 8); i--, c++) {
unsigned long area_end =
npage_bytes((*new_areas)[i].page)
+ (*new_areas)[i].offset
+ (*new_areas)[i].size;
/*FSHOW((stderr,
"/add_new_area S1 %d %d %d %d\n",
i, c, new_area_start, area_end));*/
if (new_area_start == area_end) {
/*FSHOW((stderr,
"/adding to [%d] %d %d %d with %d %d %d:\n",
i,
(*new_areas)[i].page,
(*new_areas)[i].offset,
(*new_areas)[i].size,
first_page,
offset,
size);*/
(*new_areas)[i].size += size;
return;
}
}
(*new_areas)[new_areas_index].page = first_page;
(*new_areas)[new_areas_index].offset = offset;
(*new_areas)[new_areas_index].size = size;
/*FSHOW((stderr,
"/new_area %d page %d offset %d size %d\n",
new_areas_index, first_page, offset, size));*/
new_areas_index++;
/* Note the max new_areas used. */
if (new_areas_index > max_new_areas)
max_new_areas = new_areas_index;
}
/* Update the tables for the alloc_region. The region may be added to
* the new_areas.
*
* When done the alloc_region is set up so that the next quick alloc
* will fail safely and thus a new region will be allocated. Further
* it is safe to try to re-update the page table of this reset
* alloc_region. */
void
gc_alloc_update_page_tables(int page_type_flag, struct alloc_region *alloc_region)
{
int more;
page_index_t first_page;
page_index_t next_page;
unsigned long bytes_used;
unsigned long orig_first_page_bytes_used;
unsigned long region_size;
unsigned long byte_cnt;
int ret;
first_page = alloc_region->first_page;
/* Catch an unused alloc_region. */
if ((first_page == 0) && (alloc_region->last_page == -1))
return;
next_page = first_page+1;
ret = thread_mutex_lock(&free_pages_lock);
gc_assert(ret == 0);
if (alloc_region->free_pointer != alloc_region->start_addr) {
/* some bytes were allocated in the region */
orig_first_page_bytes_used = page_table[first_page].bytes_used;
gc_assert(alloc_region->start_addr ==
(page_address(first_page)
+ page_table[first_page].bytes_used));
/* All the pages used need to be updated */
/* Update the first page. */
/* If the page was free then set up the gen, and
* region_start_offset. */
if (page_table[first_page].bytes_used == 0)
gc_assert(page_table[first_page].region_start_offset == 0);
page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
gc_assert(page_table[first_page].allocated & page_type_flag);
gc_assert(page_table[first_page].gen == gc_alloc_generation);
gc_assert(page_table[first_page].large_object == 0);
byte_cnt = 0;
/* Calculate the number of bytes used in this page. This is not
* always the number of new bytes, unless it was free. */
more = 0;
if ((bytes_used = void_diff(alloc_region->free_pointer,
page_address(first_page)))
>PAGE_BYTES) {
bytes_used = PAGE_BYTES;
more = 1;
}
page_table[first_page].bytes_used = bytes_used;
byte_cnt += bytes_used;
/* All the rest of the pages should be free. We need to set
* their region_start_offset pointer to the start of the
* region, and set the bytes_used. */
while (more) {
page_table[next_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
gc_assert(page_table[next_page].allocated & page_type_flag);
gc_assert(page_table[next_page].bytes_used == 0);
gc_assert(page_table[next_page].gen == gc_alloc_generation);
gc_assert(page_table[next_page].large_object == 0);
gc_assert(page_table[next_page].region_start_offset ==
void_diff(page_address(next_page),
alloc_region->start_addr));
/* Calculate the number of bytes used in this page. */
more = 0;
if ((bytes_used = void_diff(alloc_region->free_pointer,
page_address(next_page)))>PAGE_BYTES) {
bytes_used = PAGE_BYTES;
more = 1;
}
page_table[next_page].bytes_used = bytes_used;
byte_cnt += bytes_used;
next_page++;
}
region_size = void_diff(alloc_region->free_pointer,
alloc_region->start_addr);
bytes_allocated += region_size;
generations[gc_alloc_generation].bytes_allocated += region_size;
gc_assert((byte_cnt- orig_first_page_bytes_used) == region_size);
/* Set the generations alloc restart page to the last page of
* the region. */
set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 0, next_page-1);
/* Add the region to the new_areas if requested. */
if (BOXED_PAGE_FLAG & page_type_flag)
add_new_area(first_page,orig_first_page_bytes_used, region_size);
/*
FSHOW((stderr,
"/gc_alloc_update_page_tables update %d bytes to gen %d\n",
region_size,
gc_alloc_generation));
*/
} else {
/* There are no bytes allocated. Unallocate the first_page if
* there are 0 bytes_used. */
page_table[first_page].allocated &= ~(OPEN_REGION_PAGE_FLAG);
if (page_table[first_page].bytes_used == 0)
page_table[first_page].allocated = FREE_PAGE_FLAG;
}
/* Unallocate any unused pages. */
while (next_page <= alloc_region->last_page) {
gc_assert(page_table[next_page].bytes_used == 0);
page_table[next_page].allocated = FREE_PAGE_FLAG;
next_page++;
}
ret = thread_mutex_unlock(&free_pages_lock);
gc_assert(ret == 0);
/* alloc_region is per-thread, we're ok to do this unlocked */
gc_set_region_empty(alloc_region);
}
static inline void *gc_quick_alloc(long nbytes);
/* Allocate a possibly large object. */
void *
gc_alloc_large(long nbytes, int page_type_flag, struct alloc_region *alloc_region)
{
page_index_t first_page;
page_index_t last_page;
int orig_first_page_bytes_used;
long byte_cnt;
int more;
unsigned long bytes_used;
page_index_t next_page;
int ret;
ret = thread_mutex_lock(&free_pages_lock);
gc_assert(ret == 0);
first_page = generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1);
if (first_page <= alloc_region->last_page) {
first_page = alloc_region->last_page+1;
}
last_page=gc_find_freeish_pages(&first_page,nbytes, page_type_flag);
gc_assert(first_page > alloc_region->last_page);
set_generation_alloc_start_page(gc_alloc_generation, page_type_flag, 1, last_page);
/* Set up the pages. */
orig_first_page_bytes_used = page_table[first_page].bytes_used;
/* If the first page was free then set up the gen, and
* region_start_offset. */
if (page_table[first_page].bytes_used == 0) {
page_table[first_page].allocated = page_type_flag;
page_table[first_page].gen = gc_alloc_generation;
page_table[first_page].region_start_offset = 0;
page_table[first_page].large_object = 1;
}
gc_assert(page_table[first_page].allocated == page_type_flag);
gc_assert(page_table[first_page].gen == gc_alloc_generation);
gc_assert(page_table[first_page].large_object == 1);
byte_cnt = 0;
/* Calc. the number of bytes used in this page. This is not
* always the number of new bytes, unless it was free. */
more = 0;
if ((bytes_used = nbytes+orig_first_page_bytes_used) > PAGE_BYTES) {
bytes_used = PAGE_BYTES;
more = 1;
}
page_table[first_page].bytes_used = bytes_used;
byte_cnt += bytes_used;
next_page = first_page+1;
/* All the rest of the pages should be free. We need to set their
* region_start_offset pointer to the start of the region, and set
* the bytes_used. */
while (more) {
gc_assert(page_free_p(next_page));
gc_assert(page_table[next_page].bytes_used == 0);
page_table[next_page].allocated = page_type_flag;
page_table[next_page].gen = gc_alloc_generation;
page_table[next_page].large_object = 1;
page_table[next_page].region_start_offset =
npage_bytes(next_page-first_page) - orig_first_page_bytes_used;
/* Calculate the number of bytes used in this page. */
more = 0;
bytes_used=(nbytes+orig_first_page_bytes_used)-byte_cnt;
if (bytes_used > PAGE_BYTES) {
bytes_used = PAGE_BYTES;
more = 1;
}
page_table[next_page].bytes_used = bytes_used;
page_table[next_page].write_protected=0;
page_table[next_page].dont_move=0;
byte_cnt += bytes_used;
next_page++;
}
gc_assert((byte_cnt-orig_first_page_bytes_used) == nbytes);
bytes_allocated += nbytes;
generations[gc_alloc_generation].bytes_allocated += nbytes;
/* Add the region to the new_areas if requested. */
if (BOXED_PAGE_FLAG & page_type_flag)
add_new_area(first_page,orig_first_page_bytes_used,nbytes);
/* Bump up last_free_page */
if (last_page+1 > last_free_page) {
last_free_page = last_page+1;
set_alloc_pointer((lispobj)(page_address(last_free_page)));
}
ret = thread_mutex_unlock(&free_pages_lock);
gc_assert(ret == 0);
#ifdef READ_PROTECT_FREE_PAGES
os_protect(page_address(first_page),
npage_bytes(1+last_page-first_page),
OS_VM_PROT_ALL);
#endif
zero_dirty_pages(first_page, last_page);
return page_address(first_page);
}
static page_index_t gencgc_alloc_start_page = -1;
void
gc_heap_exhausted_error_or_lose (long available, long requested)
{
struct thread *thread = arch_os_get_current_thread();
/* Write basic information before doing anything else: if we don't
* call to lisp this is a must, and even if we do there is always
* the danger that we bounce back here before the error has been
* handled, or indeed even printed.
*/
fprintf(stderr, "Heap exhausted during %s: %ld bytes available, %ld requested.\n",
gc_active_p ? "garbage collection" : "allocation",
available, requested);
if (gc_active_p || (available == 0)) {
/* If we are in GC, or totally out of memory there is no way
* to sanely transfer control to the lisp-side of things.
*/
print_generation_stats(1);
fprintf(stderr, "GC control variables:\n");
fprintf(stderr, " *GC-INHIBIT* = %s\n *GC-PENDING* = %s\n",
SymbolValue(GC_INHIBIT,thread)==NIL ? "false" : "true",
SymbolValue(GC_PENDING,thread)==NIL ? "false" : "true");
#ifdef LISP_FEATURE_SB_THREAD
fprintf(stderr, " *STOP-FOR-GC-PENDING* = %s\n",
SymbolValue(STOP_FOR_GC_PENDING,thread)==NIL ? "false" : "true");
#endif
lose("Heap exhausted, game over.");
}
else {
/* FIXME: assert free_pages_lock held */
(void)thread_mutex_unlock(&free_pages_lock);
gc_assert(get_pseudo_atomic_atomic(thread));
clear_pseudo_atomic_atomic(thread);
if (get_pseudo_atomic_interrupted(thread))
do_pending_interrupt();
/* Another issue is that signalling HEAP-EXHAUSTED error leads
* to running user code at arbitrary places, even in a
* WITHOUT-INTERRUPTS which may lead to a deadlock without
* running out of the heap. So at this point all bets are
* off. */
if (SymbolValue(INTERRUPTS_ENABLED,thread) == NIL)
corruption_warning_and_maybe_lose
("Signalling HEAP-EXHAUSTED in a WITHOUT-INTERRUPTS.");
funcall2(StaticSymbolFunction(HEAP_EXHAUSTED_ERROR),
alloc_number(available), alloc_number(requested));
lose("HEAP-EXHAUSTED-ERROR fell through");
}
}
page_index_t
gc_find_freeish_pages(page_index_t *restart_page_ptr, long nbytes,
int page_type_flag)
{
page_index_t first_page, last_page;
page_index_t restart_page = *restart_page_ptr;
long bytes_found = 0;
long most_bytes_found = 0;
/* FIXME: assert(free_pages_lock is held); */
/* Toggled by gc_and_save for heap compaction, normally -1. */
if (gencgc_alloc_start_page != -1) {
restart_page = gencgc_alloc_start_page;
}
gc_assert(nbytes>=0);
if (((unsigned long)nbytes)>=PAGE_BYTES) {
/* Search for a contiguous free space of at least nbytes,
* aligned on a page boundary. The page-alignment is strictly
* speaking needed only for objects at least large_object_size
* bytes in size. */
do {
first_page = restart_page;
while ((first_page < page_table_pages) &&
page_allocated_p(first_page))
first_page++;
last_page = first_page;
bytes_found = PAGE_BYTES;
while ((bytes_found < nbytes) &&
(last_page < (page_table_pages-1)) &&
page_free_p(last_page+1)) {
last_page++;
bytes_found += PAGE_BYTES;
gc_assert(0 == page_table[last_page].bytes_used);
gc_assert(0 == page_table[last_page].write_protected);
}
if (bytes_found > most_bytes_found)
most_bytes_found = bytes_found;
restart_page = last_page + 1;
} while ((restart_page < page_table_pages) && (bytes_found < nbytes));
} else {
/* Search for a page with at least nbytes of space. We prefer
* not to split small objects on multiple pages, to reduce the
* number of contiguous allocation regions spaning multiple
* pages: this helps avoid excessive conservativism. */
first_page = restart_page;
while (first_page < page_table_pages) {
if (page_free_p(first_page))
{
gc_assert(0 == page_table[first_page].bytes_used);
bytes_found = PAGE_BYTES;
break;
}
else if ((page_table[first_page].allocated == page_type_flag) &&
(page_table[first_page].large_object == 0) &&
(page_table[first_page].gen == gc_alloc_generation) &&
(page_table[first_page].write_protected == 0) &&
(page_table[first_page].dont_move == 0))
{
bytes_found = PAGE_BYTES
- page_table[first_page].bytes_used;
if (bytes_found > most_bytes_found)
most_bytes_found = bytes_found;
if (bytes_found >= nbytes)
break;
}
first_page++;
}
last_page = first_page;
restart_page = first_page + 1;
}
/* Check for a failure */
if (bytes_found < nbytes) {
gc_assert(restart_page >= page_table_pages);
gc_heap_exhausted_error_or_lose(most_bytes_found, nbytes);
}
gc_assert(page_table[first_page].write_protected == 0);
*restart_page_ptr = first_page;
return last_page;
}
/* Allocate bytes. All the rest of the special-purpose allocation
* functions will eventually call this */
void *
gc_alloc_with_region(long nbytes,int page_type_flag, struct alloc_region *my_region,
int quick_p)
{
void *new_free_pointer;
if (nbytes>=large_object_size)
return gc_alloc_large(nbytes, page_type_flag, my_region);
/* Check whether there is room in the current alloc region. */
new_free_pointer = my_region->free_pointer + nbytes;
/* fprintf(stderr, "alloc %d bytes from %p to %p\n", nbytes,
my_region->free_pointer, new_free_pointer); */
if (new_free_pointer <= my_region->end_addr) {
/* If so then allocate from the current alloc region. */
void *new_obj = my_region->free_pointer;
my_region->free_pointer = new_free_pointer;
/* Unless a `quick' alloc was requested, check whether the
alloc region is almost empty. */
if (!quick_p &&
void_diff(my_region->end_addr,my_region->free_pointer) <= 32) {
/* If so, finished with the current region. */
gc_alloc_update_page_tables(page_type_flag, my_region);
/* Set up a new region. */
gc_alloc_new_region(32 /*bytes*/, page_type_flag, my_region);
}
return((void *)new_obj);
}
/* Else not enough free space in the current region: retry with a
* new region. */
gc_alloc_update_page_tables(page_type_flag, my_region);
gc_alloc_new_region(nbytes, page_type_flag, my_region);
return gc_alloc_with_region(nbytes, page_type_flag, my_region,0);
}
/* these are only used during GC: all allocation from the mutator calls
* alloc() -> gc_alloc_with_region() with the appropriate per-thread
* region */
static inline void *
gc_quick_alloc(long nbytes)
{
return gc_general_alloc(nbytes, BOXED_PAGE_FLAG, ALLOC_QUICK);
}
static inline void *
gc_quick_alloc_large(long nbytes)
{
return gc_general_alloc(nbytes, BOXED_PAGE_FLAG ,ALLOC_QUICK);
}
static inline void *
gc_alloc_unboxed(long nbytes)
{
return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, 0);
}
static inline void *
gc_quick_alloc_unboxed(long nbytes)
{
return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, ALLOC_QUICK);
}
static inline void *
gc_quick_alloc_large_unboxed(long nbytes)
{
return gc_general_alloc(nbytes, UNBOXED_PAGE_FLAG, ALLOC_QUICK);
}
/* Copy a large boxed object. If the object is in a large object
* region then it is simply promoted, else it is copied. If it's large
* enough then it's copied to a large object region.
*
* Vectors may have shrunk. If the object is not copied the space
* needs to be reclaimed, and the page_tables corrected. */
lispobj
copy_large_object(lispobj object, long nwords)
{
int tag;
lispobj *new;
page_index_t first_page;
gc_assert(is_lisp_pointer(object));
gc_assert(from_space_p(object));
gc_assert((nwords & 0x01) == 0);
/* Check whether it's in a large object region. */
first_page = find_page_index((void *)object);
gc_assert(first_page >= 0);
if (page_table[first_page].large_object) {
/* Promote the object. */
unsigned long remaining_bytes;
page_index_t next_page;
unsigned long bytes_freed;
unsigned long old_bytes_used;
/* Note: Any page write-protection must be removed, else a
* later scavenge_newspace may incorrectly not scavenge these
* pages. This would not be necessary if they are added to the
* new areas, but let's do it for them all (they'll probably
* be written anyway?). */
gc_assert(page_table[first_page].region_start_offset == 0);
next_page = first_page;
remaining_bytes = nwords*N_WORD_BYTES;
while (remaining_bytes > PAGE_BYTES) {
gc_assert(page_table[next_page].gen == from_space);
gc_assert(page_boxed_p(next_page));
gc_assert(page_table[next_page].large_object);
gc_assert(page_table[next_page].region_start_offset ==
npage_bytes(next_page-first_page));
gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
page_table[next_page].gen = new_space;
/* Remove any write-protection. We should be able to rely
* on the write-protect flag to avoid redundant calls. */
if (page_table[next_page].write_protected) {
os_protect(page_address(next_page), PAGE_BYTES, OS_VM_PROT_ALL);
page_table[next_page].write_protected = 0;
}
remaining_bytes -= PAGE_BYTES;
next_page++;
}
/* Now only one page remains, but the object may have shrunk
* so there may be more unused pages which will be freed. */
/* The object may have shrunk but shouldn't have grown. */
gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
page_table[next_page].gen = new_space;
gc_assert(page_boxed_p(next_page));
/* Adjust the bytes_used. */
old_bytes_used = page_table[next_page].bytes_used;
page_table[next_page].bytes_used = remaining_bytes;
bytes_freed = old_bytes_used - remaining_bytes;
/* Free any remaining pages; needs care. */
next_page++;
while ((old_bytes_used == PAGE_BYTES) &&
(page_table[next_page].gen == from_space) &&
page_boxed_p(next_page) &&
page_table[next_page].large_object &&
(page_table[next_page].region_start_offset ==
npage_bytes(next_page - first_page))) {
/* Checks out OK, free the page. Don't need to bother zeroing
* pages as this should have been done before shrinking the
* object. These pages shouldn't be write-protected as they
* should be zero filled. */
gc_assert(page_table[next_page].write_protected == 0);
old_bytes_used = page_table[next_page].bytes_used;
page_table[next_page].allocated = FREE_PAGE_FLAG;
page_table[next_page].bytes_used = 0;
bytes_freed += old_bytes_used;
next_page++;
}
generations[from_space].bytes_allocated -= N_WORD_BYTES*nwords
+ bytes_freed;
generations[new_space].bytes_allocated += N_WORD_BYTES*nwords;
bytes_allocated -= bytes_freed;
/* Add the region to the new_areas if requested. */
add_new_area(first_page,0,nwords*N_WORD_BYTES);
return(object);
} else {
/* Get tag of object. */
tag = lowtag_of(object);
/* Allocate space. */
new = gc_quick_alloc_large(nwords*N_WORD_BYTES);
memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
/* Return Lisp pointer of new object. */
return ((lispobj) new) | tag;
}
}
/* to copy unboxed objects */
lispobj
copy_unboxed_object(lispobj object, long nwords)
{
long tag;
lispobj *new;
gc_assert(is_lisp_pointer(object));
gc_assert(from_space_p(object));
gc_assert((nwords & 0x01) == 0);
/* Get tag of object. */
tag = lowtag_of(object);
/* Allocate space. */
new = gc_quick_alloc_unboxed(nwords*N_WORD_BYTES);
memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
/* Return Lisp pointer of new object. */
return ((lispobj) new) | tag;
}
/* to copy large unboxed objects
*
* If the object is in a large object region then it is simply
* promoted, else it is copied. If it's large enough then it's copied
* to a large object region.
*
* Bignums and vectors may have shrunk. If the object is not copied
* the space needs to be reclaimed, and the page_tables corrected.
*
* KLUDGE: There's a lot of cut-and-paste duplication between this
* function and copy_large_object(..). -- WHN 20000619 */
lispobj
copy_large_unboxed_object(lispobj object, long nwords)
{
int tag;
lispobj *new;
page_index_t first_page;
gc_assert(is_lisp_pointer(object));
gc_assert(from_space_p(object));
gc_assert((nwords & 0x01) == 0);
if ((nwords > 1024*1024) && gencgc_verbose) {
FSHOW((stderr, "/copy_large_unboxed_object: %d bytes\n",
nwords*N_WORD_BYTES));
}
/* Check whether it's a large object. */
first_page = find_page_index((void *)object);
gc_assert(first_page >= 0);
if (page_table[first_page].large_object) {
/* Promote the object. Note: Unboxed objects may have been
* allocated to a BOXED region so it may be necessary to
* change the region to UNBOXED. */
unsigned long remaining_bytes;
page_index_t next_page;
unsigned long bytes_freed;
unsigned long old_bytes_used;
gc_assert(page_table[first_page].region_start_offset == 0);
next_page = first_page;
remaining_bytes = nwords*N_WORD_BYTES;
while (remaining_bytes > PAGE_BYTES) {
gc_assert(page_table[next_page].gen == from_space);
gc_assert(page_allocated_no_region_p(next_page));
gc_assert(page_table[next_page].large_object);
gc_assert(page_table[next_page].region_start_offset ==
npage_bytes(next_page-first_page));
gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
page_table[next_page].gen = new_space;
page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
remaining_bytes -= PAGE_BYTES;
next_page++;
}
/* Now only one page remains, but the object may have shrunk so
* there may be more unused pages which will be freed. */
/* Object may have shrunk but shouldn't have grown - check. */
gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
page_table[next_page].gen = new_space;
page_table[next_page].allocated = UNBOXED_PAGE_FLAG;
/* Adjust the bytes_used. */
old_bytes_used = page_table[next_page].bytes_used;
page_table[next_page].bytes_used = remaining_bytes;
bytes_freed = old_bytes_used - remaining_bytes;
/* Free any remaining pages; needs care. */
next_page++;
while ((old_bytes_used == PAGE_BYTES) &&
(page_table[next_page].gen == from_space) &&
page_allocated_no_region_p(next_page) &&
page_table[next_page].large_object &&
(page_table[next_page].region_start_offset ==
npage_bytes(next_page - first_page))) {
/* Checks out OK, free the page. Don't need to both zeroing
* pages as this should have been done before shrinking the
* object. These pages shouldn't be write-protected, even if
* boxed they should be zero filled. */
gc_assert(page_table[next_page].write_protected == 0);
old_bytes_used = page_table[next_page].bytes_used;
page_table[next_page].allocated = FREE_PAGE_FLAG;
page_table[next_page].bytes_used = 0;
bytes_freed += old_bytes_used;
next_page++;
}
if ((bytes_freed > 0) && gencgc_verbose) {
FSHOW((stderr,
"/copy_large_unboxed bytes_freed=%d\n",
bytes_freed));
}
generations[from_space].bytes_allocated -=
nwords*N_WORD_BYTES + bytes_freed;
generations[new_space].bytes_allocated += nwords*N_WORD_BYTES;
bytes_allocated -= bytes_freed;
return(object);
}
else {
/* Get tag of object. */
tag = lowtag_of(object);
/* Allocate space. */
new = gc_quick_alloc_large_unboxed(nwords*N_WORD_BYTES);
/* Copy the object. */
memcpy(new,native_pointer(object),nwords*N_WORD_BYTES);
/* Return Lisp pointer of new object. */
return ((lispobj) new) | tag;
}
}
/*
* code and code-related objects
*/
/*
static lispobj trans_fun_header(lispobj object);
static lispobj trans_boxed(lispobj object);
*/
/* Scan a x86 compiled code object, looking for possible fixups that
* have been missed after a move.
*
* Two types of fixups are needed:
* 1. Absolute fixups to within the code object.
* 2. Relative fixups to outside the code object.
*
* Currently only absolute fixups to the constant vector, or to the
* code area are checked. */
void
sniff_code_object(struct code *code, unsigned long displacement)
{
#ifdef LISP_FEATURE_X86
long nheader_words, ncode_words, nwords;
void *p;
void *constants_start_addr = NULL, *constants_end_addr;
void *code_start_addr, *code_end_addr;
int fixup_found = 0;
if (!check_code_fixups)
return;
FSHOW((stderr, "/sniffing code: %p, %lu\n", code, displacement));
ncode_words = fixnum_value(code->code_size);
nheader_words = HeaderValue(*(lispobj *)code);
nwords = ncode_words + nheader_words;
constants_start_addr = (void *)code + 5*N_WORD_BYTES;
constants_end_addr = (void *)code + nheader_words*N_WORD_BYTES;
code_start_addr = (void *)code + nheader_words*N_WORD_BYTES;
code_end_addr = (void *)code + nwords*N_WORD_BYTES;
/* Work through the unboxed code. */
for (p = code_start_addr; p < code_end_addr; p++) {
void *data = *(void **)p;
unsigned d1 = *((unsigned char *)p - 1);
unsigned d2 = *((unsigned char *)p - 2);
unsigned d3 = *((unsigned char *)p - 3);
unsigned d4 = *((unsigned char *)p - 4);
#ifdef QSHOW
unsigned d5 = *((unsigned char *)p - 5);
unsigned d6 = *((unsigned char *)p - 6);
#endif
/* Check for code references. */
/* Check for a 32 bit word that looks like an absolute
reference to within the code adea of the code object. */
if ((data >= (code_start_addr-displacement))
&& (data < (code_end_addr-displacement))) {
/* function header */
if ((d4 == 0x5e)
&& (((unsigned)p - 4 - 4*HeaderValue(*((unsigned *)p-1))) ==
(unsigned)code)) {
/* Skip the function header */
p += 6*4 - 4 - 1;
continue;
}
/* the case of PUSH imm32 */
if (d1 == 0x68) {
fixup_found = 1;
FSHOW((stderr,
"/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
p, d6, d5, d4, d3, d2, d1, data));
FSHOW((stderr, "/PUSH $0x%.8x\n", data));
}
/* the case of MOV [reg-8],imm32 */
if ((d3 == 0xc7)
&& (d2==0x40 || d2==0x41 || d2==0x42 || d2==0x43
|| d2==0x45 || d2==0x46 || d2==0x47)
&& (d1 == 0xf8)) {
fixup_found = 1;
FSHOW((stderr,
"/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
p, d6, d5, d4, d3, d2, d1, data));
FSHOW((stderr, "/MOV [reg-8],$0x%.8x\n", data));
}
/* the case of LEA reg,[disp32] */
if ((d2 == 0x8d) && ((d1 & 0xc7) == 5)) {
fixup_found = 1;
FSHOW((stderr,
"/code ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
p, d6, d5, d4, d3, d2, d1, data));
FSHOW((stderr,"/LEA reg,[$0x%.8x]\n", data));
}
}
/* Check for constant references. */
/* Check for a 32 bit word that looks like an absolute
reference to within the constant vector. Constant references
will be aligned. */
if ((data >= (constants_start_addr-displacement))
&& (data < (constants_end_addr-displacement))
&& (((unsigned)data & 0x3) == 0)) {
/* Mov eax,m32 */
if (d1 == 0xa1) {
fixup_found = 1;
FSHOW((stderr,
"/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
p, d6, d5, d4, d3, d2, d1, data));
FSHOW((stderr,"/MOV eax,0x%.8x\n", data));
}
/* the case of MOV m32,EAX */
if (d1 == 0xa3) {
fixup_found = 1;
FSHOW((stderr,
"/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
p, d6, d5, d4, d3, d2, d1, data));
FSHOW((stderr, "/MOV 0x%.8x,eax\n", data));
}
/* the case of CMP m32,imm32 */
if ((d1 == 0x3d) && (d2 == 0x81)) {
fixup_found = 1;
FSHOW((stderr,
"/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
p, d6, d5, d4, d3, d2, d1, data));
/* XX Check this */
FSHOW((stderr, "/CMP 0x%.8x,immed32\n", data));
}
/* Check for a mod=00, r/m=101 byte. */
if ((d1 & 0xc7) == 5) {
/* Cmp m32,reg */
if (d2 == 0x39) {
fixup_found = 1;
FSHOW((stderr,
"/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
p, d6, d5, d4, d3, d2, d1, data));
FSHOW((stderr,"/CMP 0x%.8x,reg\n", data));
}
/* the case of CMP reg32,m32 */
if (d2 == 0x3b) {
fixup_found = 1;
FSHOW((stderr,
"/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
p, d6, d5, d4, d3, d2, d1, data));
FSHOW((stderr, "/CMP reg32,0x%.8x\n", data));
}
/* the case of MOV m32,reg32 */
if (d2 == 0x89) {
fixup_found = 1;
FSHOW((stderr,
"/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
p, d6, d5, d4, d3, d2, d1, data));
FSHOW((stderr, "/MOV 0x%.8x,reg32\n", data));
}
/* the case of MOV reg32,m32 */
if (d2 == 0x8b) {
fixup_found = 1;
FSHOW((stderr,
"/abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
p, d6, d5, d4, d3, d2, d1, data));
FSHOW((stderr, "/MOV reg32,0x%.8x\n", data));
}
/* the case of LEA reg32,m32 */
if (d2 == 0x8d) {
fixup_found = 1;
FSHOW((stderr,
"abs const ref @%x: %.2x %.2x %.2x %.2x %.2x %.2x (%.8x)\n",
p, d6, d5, d4, d3, d2, d1, data));
FSHOW((stderr, "/LEA reg32,0x%.8x\n", data));
}
}
}
}
/* If anything was found, print some information on the code
* object. */
if (fixup_found) {
FSHOW((stderr,
"/compiled code object at %x: header words = %d, code words = %d\n",
code, nheader_words, ncode_words));
FSHOW((stderr,
"/const start = %x, end = %x\n",
constants_start_addr, constants_end_addr));
FSHOW((stderr,
"/code start = %x, end = %x\n",
code_start_addr, code_end_addr));
}
#endif
}
void
gencgc_apply_code_fixups(struct code *old_code, struct code *new_code)
{
/* x86-64 uses pc-relative addressing instead of this kludge */
#ifndef LISP_FEATURE_X86_64
long nheader_words, ncode_words, nwords;
void *constants_start_addr, *constants_end_addr;
void *code_start_addr, *code_end_addr;
lispobj fixups = NIL;
unsigned long displacement =
(unsigned long)new_code - (unsigned long)old_code;
struct vector *fixups_vector;
ncode_words = fixnum_value(new_code->code_size);
nheader_words = HeaderValue(*(lispobj *)new_code);
nwords = ncode_words + nheader_words;
/* FSHOW((stderr,
"/compiled code object at %x: header words = %d, code words = %d\n",
new_code, nheader_words, ncode_words)); */
constants_start_addr = (void *)new_code + 5*N_WORD_BYTES;
constants_end_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
code_start_addr = (void *)new_code + nheader_words*N_WORD_BYTES;
code_end_addr = (void *)new_code + nwords*N_WORD_BYTES;
/*
FSHOW((stderr,
"/const start = %x, end = %x\n",
constants_start_addr,constants_end_addr));
FSHOW((stderr,
"/code start = %x; end = %x\n",
code_start_addr,code_end_addr));
*/
/* The first constant should be a pointer to the fixups for this
code objects. Check. */
fixups = new_code->constants[0];
/* It will be 0 or the unbound-marker if there are no fixups (as
* will be the case if the code object has been purified, for
* example) and will be an other pointer if it is valid. */
if ((fixups == 0) || (fixups == UNBOUND_MARKER_WIDETAG) ||
!is_lisp_pointer(fixups)) {
/* Check for possible errors. */
if (check_code_fixups)
sniff_code_object(new_code, displacement);
return;
}
fixups_vector = (struct vector *)native_pointer(fixups);
/* Could be pointing to a forwarding pointer. */
/* FIXME is this always in from_space? if so, could replace this code with
* forwarding_pointer_p/forwarding_pointer_value */
if (is_lisp_pointer(fixups) &&
(find_page_index((void*)fixups_vector) != -1) &&
(fixups_vector->header == 0x01)) {
/* If so, then follow it. */
/*SHOW("following pointer to a forwarding pointer");*/
fixups_vector =
(struct vector *)native_pointer((lispobj)fixups_vector->length);
}
/*SHOW("got fixups");*/
if (widetag_of(fixups_vector->header) == SIMPLE_ARRAY_WORD_WIDETAG) {
/* Got the fixups for the code block. Now work through the vector,
and apply a fixup at each address. */
long length = fixnum_value(fixups_vector->length);
long i;
for (i = 0; i < length; i++) {
unsigned long offset = fixups_vector->data[i];
/* Now check the current value of offset. */
unsigned long old_value =
*(unsigned long *)((unsigned long)code_start_addr + offset);
/* If it's within the old_code object then it must be an
* absolute fixup (relative ones are not saved) */
if ((old_value >= (unsigned long)old_code)
&& (old_value < ((unsigned long)old_code
+ nwords*N_WORD_BYTES)))
/* So add the dispacement. */
*(unsigned long *)((unsigned long)code_start_addr + offset) =
old_value + displacement;
else
/* It is outside the old code object so it must be a
* relative fixup (absolute fixups are not saved). So
* subtract the displacement. */
*(unsigned long *)((unsigned long)code_start_addr + offset) =
old_value - displacement;
}
} else {
/* This used to just print a note to stderr, but a bogus fixup seems to
* indicate real heap corruption, so a hard hailure is in order. */
lose("fixup vector %p has a bad widetag: %d\n",
fixups_vector, widetag_of(fixups_vector->header));
}
/* Check for possible errors. */
if (check_code_fixups) {
sniff_code_object(new_code,displacement);
}
#endif
}
static lispobj
trans_boxed_large(lispobj object)
{
lispobj header;
unsigned long length;
gc_assert(is_lisp_pointer(object));
header = *((lispobj *) native_pointer(object));
length = HeaderValue(header) + 1;
length = CEILING(length, 2);
return copy_large_object(object, length);
}
/* Doesn't seem to be used, delete it after the grace period. */
#if 0
static lispobj
trans_unboxed_large(lispobj object)
{
lispobj header;
unsigned long length;
gc_assert(is_lisp_pointer(object));
header = *((lispobj *) native_pointer(object));
length = HeaderValue(header) + 1;
length = CEILING(length, 2);
return copy_large_unboxed_object(object, length);
}
#endif
/*
* Lutexes. Using the normal finalization machinery for finalizing
* lutexes is tricky, since the finalization depends on working lutexes.
* So we track the lutexes in the GC and finalize them manually.
*/
#if defined(LUTEX_WIDETAG)
/*
* Start tracking LUTEX in the GC, by adding it to the linked list of
* lutexes in the nursery generation. The caller is responsible for
* locking, and GCs must be inhibited until the registration is
* complete.
*/
void
gencgc_register_lutex (struct lutex *lutex) {
int index = find_page_index(lutex);
generation_index_t gen;
struct lutex *head;
/* This lutex is in static space, so we don't need to worry about
* finalizing it.
*/
if (index == -1)
return;
gen = page_table[index].gen;
gc_assert(gen >= 0);
gc_assert(gen < NUM_GENERATIONS);
head = generations[gen].lutexes;
lutex->gen = gen;
lutex->next = head;
lutex->prev = NULL;
if (head)
head->prev = lutex;
generations[gen].lutexes = lutex;
}
/*
* Stop tracking LUTEX in the GC by removing it from the appropriate
* linked lists. This will only be called during GC, so no locking is
* needed.
*/
void
gencgc_unregister_lutex (struct lutex *lutex) {
if (lutex->prev) {
lutex->prev->next = lutex->next;
} else {
generations[lutex->gen].lutexes = lutex->next;
}
if (lutex->next) {
lutex->next->prev = lutex->prev;
}
lutex->next = NULL;
lutex->prev = NULL;
lutex->gen = -1;
}
/*
* Mark all lutexes in generation GEN as not live.
*/
static void
unmark_lutexes (generation_index_t gen) {
struct lutex *lutex = generations[gen].lutexes;
while (lutex) {
lutex->live = 0;
lutex = lutex->next;
}
}
/*
* Finalize all lutexes in generation GEN that have not been marked live.
*/
static void
reap_lutexes (generation_index_t gen) {
struct lutex *lutex = generations[gen].lutexes;
while (lutex) {
struct lutex *next = lutex->next;
if (!lutex->live) {
lutex_destroy((tagged_lutex_t) lutex);
gencgc_unregister_lutex(lutex);
}
lutex = next;
}
}
/*
* Mark LUTEX as live.
*/
static void
mark_lutex (lispobj tagged_lutex) {
struct lutex *lutex = (struct lutex*) native_pointer(tagged_lutex);
lutex->live = 1;
}
/*
* Move all lutexes in generation FROM to generation TO.
*/
static void
move_lutexes (generation_index_t from, generation_index_t to) {
struct lutex *tail = generations[from].lutexes;
/* Nothing to move */
if (!tail)
return;
/* Change the generation of the lutexes in FROM. */
while (tail->next) {
tail->gen = to;
tail = tail->next;
}
tail->gen = to;
/* Link the last lutex in the FROM list to the start of the TO list */
tail->next = generations[to].lutexes;
/* And vice versa */
if (generations[to].lutexes) {
generations[to].lutexes->prev = tail;
}
/* And update the generations structures to match this */
generations[to].lutexes = generations[from].lutexes;
generations[from].lutexes = NULL;
}
static long
scav_lutex(lispobj *where, lispobj object)
{
mark_lutex((lispobj) where);
return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
}
static lispobj
trans_lutex(lispobj object)
{
struct lutex *lutex = (struct lutex *) native_pointer(object);
lispobj copied;
size_t words = CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
gc_assert(is_lisp_pointer(object));
copied = copy_object(object, words);
/* Update the links, since the lutex moved in memory. */
if (lutex->next) {
lutex->next->prev = (struct lutex *) native_pointer(copied);
}
if (lutex->prev) {
lutex->prev->next = (struct lutex *) native_pointer(copied);
} else {
generations[lutex->gen].lutexes =
(struct lutex *) native_pointer(copied);
}
return copied;
}
static long
size_lutex(lispobj *where)
{
return CEILING(sizeof(struct lutex)/sizeof(lispobj), 2);
}
#endif /* LUTEX_WIDETAG */
/*
* weak pointers
*/
/* XX This is a hack adapted from cgc.c. These don't work too
* efficiently with the gencgc as a list of the weak pointers is
* maintained within the objects which causes writes to the pages. A
* limited attempt is made to avoid unnecessary writes, but this needs
* a re-think. */
#define WEAK_POINTER_NWORDS \
CEILING((sizeof(struct weak_pointer) / sizeof(lispobj)), 2)
static long
scav_weak_pointer(lispobj *where, lispobj object)
{
/* Since we overwrite the 'next' field, we have to make
* sure not to do so for pointers already in the list.
* Instead of searching the list of weak_pointers each
* time, we ensure that next is always NULL when the weak
* pointer isn't in the list, and not NULL otherwise.
* Since we can't use NULL to denote end of list, we
* use a pointer back to the same weak_pointer.
*/
struct weak_pointer * wp = (struct weak_pointer*)where;
if (NULL == wp->next) {
wp->next = weak_pointers;
weak_pointers = wp;
if (NULL == wp->next)
wp->next = wp;
}
/* Do not let GC scavenge the value slot of the weak pointer.
* (That is why it is a weak pointer.) */
return WEAK_POINTER_NWORDS;
}
lispobj *
search_read_only_space(void *pointer)
{
lispobj *start = (lispobj *) READ_ONLY_SPACE_START;
lispobj *end = (lispobj *) SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0);
if ((pointer < (void *)start) || (pointer >= (void *)end))
return NULL;
return (gc_search_space(start,
(((lispobj *)pointer)+2)-start,
(lispobj *) pointer));
}
lispobj *
search_static_space(void *pointer)
{
lispobj *start = (lispobj *)STATIC_SPACE_START;
lispobj *end = (lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0);
if ((pointer < (void *)start) || (pointer >= (void *)end))
return NULL;
return (gc_search_space(start,
(((lispobj *)pointer)+2)-start,
(lispobj *) pointer));
}
/* a faster version for searching the dynamic space. This will work even
* if the object is in a current allocation region. */
lispobj *
search_dynamic_space(void *pointer)
{
page_index_t page_index = find_page_index(pointer);
lispobj *start;
/* The address may be invalid, so do some checks. */
if ((page_index == -1) || page_free_p(page_index))
return NULL;
start = (lispobj *)page_region_start(page_index);
return (gc_search_space(start,
(((lispobj *)pointer)+2)-start,
(lispobj *)pointer));
}
#if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
/* Helper for valid_lisp_pointer_p and
* possibly_valid_dynamic_space_pointer.
*
* pointer is the pointer to validate, and start_addr is the address
* of the enclosing object.
*/
static int
looks_like_valid_lisp_pointer_p(lispobj *pointer, lispobj *start_addr)
{
if (!is_lisp_pointer((lispobj)pointer)) {
return 0;
}
/* Check that the object pointed to is consistent with the pointer
* low tag. */
switch (lowtag_of((lispobj)pointer)) {
case FUN_POINTER_LOWTAG:
/* Start_addr should be the enclosing code object, or a closure
* header. */
switch (widetag_of(*start_addr)) {
case CODE_HEADER_WIDETAG:
/* This case is probably caught above. */
break;
case CLOSURE_HEADER_WIDETAG:
case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
if ((unsigned long)pointer !=
((unsigned long)start_addr+FUN_POINTER_LOWTAG)) {
if (gencgc_verbose) {
FSHOW((stderr,
"/Wf2: %x %x %x\n",
pointer, start_addr, *start_addr));
}
return 0;
}
break;
default:
if (gencgc_verbose) {
FSHOW((stderr,
"/Wf3: %x %x %x\n",
pointer, start_addr, *start_addr));
}
return 0;
}
break;
case LIST_POINTER_LOWTAG:
if ((unsigned long)pointer !=
((unsigned long)start_addr+LIST_POINTER_LOWTAG)) {
if (gencgc_verbose) {
FSHOW((stderr,
"/Wl1: %x %x %x\n",
pointer, start_addr, *start_addr));
}
return 0;
}
/* Is it plausible cons? */
if ((is_lisp_pointer(start_addr[0]) ||
is_lisp_immediate(start_addr[0])) &&
(is_lisp_pointer(start_addr[1]) ||
is_lisp_immediate(start_addr[1])))
break;
else {
if (gencgc_verbose) {
FSHOW((stderr,
"/Wl2: %x %x %x\n",
pointer, start_addr, *start_addr));
}
return 0;
}
case INSTANCE_POINTER_LOWTAG:
if ((unsigned long)pointer !=
((unsigned long)start_addr+INSTANCE_POINTER_LOWTAG)) {
if (gencgc_verbose) {
FSHOW((stderr,
"/Wi1: %x %x %x\n",
pointer, start_addr, *start_addr));
}
return 0;
}
if (widetag_of(start_addr[0]) != INSTANCE_HEADER_WIDETAG) {
if (gencgc_verbose) {
FSHOW((stderr,
"/Wi2: %x %x %x\n",
pointer, start_addr, *start_addr));
}
return 0;
}
break;
case OTHER_POINTER_LOWTAG:
if ((unsigned long)pointer !=
((unsigned long)start_addr+OTHER_POINTER_LOWTAG)) {
if (gencgc_verbose) {
FSHOW((stderr,
"/Wo1: %x %x %x\n",
pointer, start_addr, *start_addr));
}
return 0;
}
/* Is it plausible? Not a cons. XXX should check the headers. */
if (is_lisp_pointer(start_addr[0]) || ((start_addr[0] & 3) == 0)) {
if (gencgc_verbose) {
FSHOW((stderr,
"/Wo2: %x %x %x\n",
pointer, start_addr, *start_addr));
}
return 0;
}
switch (widetag_of(start_addr[0])) {
case UNBOUND_MARKER_WIDETAG:
case NO_TLS_VALUE_MARKER_WIDETAG:
case CHARACTER_WIDETAG:
#if N_WORD_BITS == 64
case SINGLE_FLOAT_WIDETAG:
#endif
if (gencgc_verbose) {
FSHOW((stderr,
"*Wo3: %x %x %x\n",
pointer, start_addr, *start_addr));
}
return 0;
/* only pointed to by function pointers? */
case CLOSURE_HEADER_WIDETAG:
case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
if (gencgc_verbose) {
FSHOW((stderr,
"*Wo4: %x %x %x\n",
pointer, start_addr, *start_addr));
}
return 0;
case INSTANCE_HEADER_WIDETAG:
if (gencgc_verbose) {
FSHOW((stderr,
"*Wo5: %x %x %x\n",
pointer, start_addr, *start_addr));
}
return 0;
/* the valid other immediate pointer objects */
case SIMPLE_VECTOR_WIDETAG:
case RATIO_WIDETAG:
case COMPLEX_WIDETAG:
#ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
case COMPLEX_SINGLE_FLOAT_WIDETAG:
#endif
#ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
case COMPLEX_DOUBLE_FLOAT_WIDETAG:
#endif
#ifdef COMPLEX_LONG_FLOAT_WIDETAG
case COMPLEX_LONG_FLOAT_WIDETAG:
#endif
case SIMPLE_ARRAY_WIDETAG:
case COMPLEX_BASE_STRING_WIDETAG:
#ifdef COMPLEX_CHARACTER_STRING_WIDETAG
case COMPLEX_CHARACTER_STRING_WIDETAG:
#endif
case COMPLEX_VECTOR_NIL_WIDETAG:
case COMPLEX_BIT_VECTOR_WIDETAG:
case COMPLEX_VECTOR_WIDETAG:
case COMPLEX_ARRAY_WIDETAG:
case VALUE_CELL_HEADER_WIDETAG:
case SYMBOL_HEADER_WIDETAG:
case FDEFN_WIDETAG:
case CODE_HEADER_WIDETAG:
case BIGNUM_WIDETAG:
#if N_WORD_BITS != 64
case SINGLE_FLOAT_WIDETAG:
#endif
case DOUBLE_FLOAT_WIDETAG:
#ifdef LONG_FLOAT_WIDETAG
case LONG_FLOAT_WIDETAG:
#endif
case SIMPLE_BASE_STRING_WIDETAG:
#ifdef SIMPLE_CHARACTER_STRING_WIDETAG
case SIMPLE_CHARACTER_STRING_WIDETAG:
#endif
case SIMPLE_BIT_VECTOR_WIDETAG:
case SIMPLE_ARRAY_NIL_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
#endif
case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
#endif
case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
#ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
#endif
case SAP_WIDETAG:
case WEAK_POINTER_WIDETAG:
#ifdef LUTEX_WIDETAG
case LUTEX_WIDETAG:
#endif
break;
default:
if (gencgc_verbose) {
FSHOW((stderr,
"/Wo6: %x %x %x\n",
pointer, start_addr, *start_addr));
}
return 0;
}
break;
default:
if (gencgc_verbose) {
FSHOW((stderr,
"*W?: %x %x %x\n",
pointer, start_addr, *start_addr));
}
return 0;
}
/* looks good */
return 1;
}
/* Used by the debugger to validate possibly bogus pointers before
* calling MAKE-LISP-OBJ on them.
*
* FIXME: We would like to make this perfect, because if the debugger
* constructs a reference to a bugs lisp object, and it ends up in a
* location scavenged by the GC all hell breaks loose.
*
* Whereas possibly_valid_dynamic_space_pointer has to be conservative
* and return true for all valid pointers, this could actually be eager
* and lie about a few pointers without bad results... but that should
* be reflected in the name.
*/
int
valid_lisp_pointer_p(lispobj *pointer)
{
lispobj *start;
if (((start=search_dynamic_space(pointer))!=NULL) ||
((start=search_static_space(pointer))!=NULL) ||
((start=search_read_only_space(pointer))!=NULL))
return looks_like_valid_lisp_pointer_p(pointer, start);
else
return 0;
}
/* Is there any possibility that pointer is a valid Lisp object
* reference, and/or something else (e.g. subroutine call return
* address) which should prevent us from moving the referred-to thing?
* This is called from preserve_pointers() */
static int
possibly_valid_dynamic_space_pointer(lispobj *pointer)
{
lispobj *start_addr;
/* Find the object start address. */
if ((start_addr = search_dynamic_space(pointer)) == NULL) {
return 0;
}
return looks_like_valid_lisp_pointer_p(pointer, start_addr);
}
/* Adjust large bignum and vector objects. This will adjust the
* allocated region if the size has shrunk, and move unboxed objects
* into unboxed pages. The pages are not promoted here, and the
* promoted region is not added to the new_regions; this is really
* only designed to be called from preserve_pointer(). Shouldn't fail
* if this is missed, just may delay the moving of objects to unboxed
* pages, and the freeing of pages. */
static void
maybe_adjust_large_object(lispobj *where)
{
page_index_t first_page;
page_index_t next_page;
long nwords;
unsigned long remaining_bytes;
unsigned long bytes_freed;
unsigned long old_bytes_used;
int boxed;
/* Check whether it's a vector or bignum object. */
switch (widetag_of(where[0])) {
case SIMPLE_VECTOR_WIDETAG:
boxed = BOXED_PAGE_FLAG;
break;
case BIGNUM_WIDETAG:
case SIMPLE_BASE_STRING_WIDETAG:
#ifdef SIMPLE_CHARACTER_STRING_WIDETAG
case SIMPLE_CHARACTER_STRING_WIDETAG:
#endif
case SIMPLE_BIT_VECTOR_WIDETAG:
case SIMPLE_ARRAY_NIL_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
#endif
case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
#endif
case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
#ifdef SIMPLE_ARRAY_LONG_FLOAT_WIDETAG
case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
#endif
boxed = UNBOXED_PAGE_FLAG;
break;
default:
return;
}
/* Find its current size. */
nwords = (sizetab[widetag_of(where[0])])(where);
first_page = find_page_index((void *)where);
gc_assert(first_page >= 0);
/* Note: Any page write-protection must be removed, else a later
* scavenge_newspace may incorrectly not scavenge these pages.
* This would not be necessary if they are added to the new areas,
* but lets do it for them all (they'll probably be written
* anyway?). */
gc_assert(page_table[first_page].region_start_offset == 0);
next_page = first_page;
remaining_bytes = nwords*N_WORD_BYTES;
while (remaining_bytes > PAGE_BYTES) {
gc_assert(page_table[next_page].gen == from_space);
gc_assert(page_allocated_no_region_p(next_page));
gc_assert(page_table[next_page].large_object);
gc_assert(page_table[next_page].region_start_offset ==
npage_bytes(next_page-first_page));
gc_assert(page_table[next_page].bytes_used == PAGE_BYTES);
page_table[next_page].allocated = boxed;
/* Shouldn't be write-protected at this stage. Essential that the
* pages aren't. */
gc_assert(!page_table[next_page].write_protected);
remaining_bytes -= PAGE_BYTES;
next_page++;
}
/* Now only one page remains, but the object may have shrunk so
* there may be more unused pages which will be freed. */
/* Object may have shrunk but shouldn't have grown - check. */
gc_assert(page_table[next_page].bytes_used >= remaining_bytes);
page_table[next_page].allocated = boxed;
gc_assert(page_table[next_page].allocated ==
page_table[first_page].allocated);
/* Adjust the bytes_used. */
old_bytes_used = page_table[next_page].bytes_used;
page_table[next_page].bytes_used = remaining_bytes;
bytes_freed = old_bytes_used - remaining_bytes;
/* Free any remaining pages; needs care. */
next_page++;
while ((old_bytes_used == PAGE_BYTES) &&
(page_table[next_page].gen == from_space) &&
page_allocated_no_region_p(next_page) &&
page_table[next_page].large_object &&
(page_table[next_page].region_start_offset ==
npage_bytes(next_page - first_page))) {
/* It checks out OK, free the page. We don't need to both zeroing
* pages as this should have been done before shrinking the
* object. These pages shouldn't be write protected as they
* should be zero filled. */
gc_assert(page_table[next_page].write_protected == 0);
old_bytes_used = page_table[next_page].bytes_used;
page_table[next_page].allocated = FREE_PAGE_FLAG;
page_table[next_page].bytes_used = 0;
bytes_freed += old_bytes_used;
next_page++;
}
if ((bytes_freed > 0) && gencgc_verbose) {
FSHOW((stderr,
"/maybe_adjust_large_object() freed %d\n",
bytes_freed));
}
generations[from_space].bytes_allocated -= bytes_freed;
bytes_allocated -= bytes_freed;
return;
}
/* Take a possible pointer to a Lisp object and mark its page in the
* page_table so that it will not be relocated during a GC.
*
* This involves locating the page it points to, then backing up to
* the start of its region, then marking all pages dont_move from there
* up to the first page that's not full or has a different generation
*
* It is assumed that all the page static flags have been cleared at
* the start of a GC.
*
* It is also assumed that the current gc_alloc() region has been
* flushed and the tables updated. */
static void
preserve_pointer(void *addr)
{
page_index_t addr_page_index = find_page_index(addr);
page_index_t first_page;
page_index_t i;
unsigned int region_allocation;
/* quick check 1: Address is quite likely to have been invalid. */
if ((addr_page_index == -1)
|| page_free_p(addr_page_index)
|| (page_table[addr_page_index].bytes_used == 0)
|| (page_table[addr_page_index].gen != from_space)
/* Skip if already marked dont_move. */
|| (page_table[addr_page_index].dont_move != 0))
return;
gc_assert(!(page_table[addr_page_index].allocated&OPEN_REGION_PAGE_FLAG));
/* (Now that we know that addr_page_index is in range, it's
* safe to index into page_table[] with it.) */
region_allocation = page_table[addr_page_index].allocated;
/* quick check 2: Check the offset within the page.
*
*/
if (((unsigned long)addr & (PAGE_BYTES - 1)) >
page_table[addr_page_index].bytes_used)
return;
/* Filter out anything which can't be a pointer to a Lisp object
* (or, as a special case which also requires dont_move, a return
* address referring to something in a CodeObject). This is
* expensive but important, since it vastly reduces the
* probability that random garbage will be bogusly interpreted as
* a pointer which prevents a page from moving. */
if (!(code_page_p(addr_page_index)
|| (is_lisp_pointer((lispobj)addr) &&
possibly_valid_dynamic_space_pointer(addr))))
return;
/* Find the beginning of the region. Note that there may be
* objects in the region preceding the one that we were passed a
* pointer to: if this is the case, we will write-protect all the
* previous objects' pages too. */
#if 0
/* I think this'd work just as well, but without the assertions.
* -dan 2004.01.01 */
first_page = find_page_index(page_region_start(addr_page_index))
#else
first_page = addr_page_index;
while (page_table[first_page].region_start_offset != 0) {
--first_page;
/* Do some checks. */
gc_assert(page_table[first_page].bytes_used == PAGE_BYTES);
gc_assert(page_table[first_page].gen == from_space);
gc_assert(page_table[first_page].allocated == region_allocation);
}
#endif
/* Adjust any large objects before promotion as they won't be
* copied after promotion. */
if (page_table[first_page].large_object) {
maybe_adjust_large_object(page_address(first_page));
/* If a large object has shrunk then addr may now point to a
* free area in which case it's ignored here. Note it gets
* through the valid pointer test above because the tail looks
* like conses. */
if (page_free_p(addr_page_index)
|| (page_table[addr_page_index].bytes_used == 0)
/* Check the offset within the page. */
|| (((unsigned long)addr & (PAGE_BYTES - 1))
> page_table[addr_page_index].bytes_used)) {
FSHOW((stderr,
"weird? ignore ptr 0x%x to freed area of large object\n",
addr));
return;
}
/* It may have moved to unboxed pages. */
region_allocation = page_table[first_page].allocated;
}
/* Now work forward until the end of this contiguous area is found,
* marking all pages as dont_move. */
for (i = first_page; ;i++) {
gc_assert(page_table[i].allocated == region_allocation);
/* Mark the page static. */
page_table[i].dont_move = 1;
/* Move the page to the new_space. XX I'd rather not do this
* but the GC logic is not quite able to copy with the static
* pages remaining in the from space. This also requires the
* generation bytes_allocated counters be updated. */
page_table[i].gen = new_space;
generations[new_space].bytes_allocated += page_table[i].bytes_used;
generations[from_space].bytes_allocated -= page_table[i].bytes_used;
/* It is essential that the pages are not write protected as
* they may have pointers into the old-space which need
* scavenging. They shouldn't be write protected at this
* stage. */
gc_assert(!page_table[i].write_protected);
/* Check whether this is the last page in this contiguous block.. */
if ((page_table[i].bytes_used < PAGE_BYTES)
/* ..or it is PAGE_BYTES and is the last in the block */
|| page_free_p(i+1)
|| (page_table[i+1].bytes_used == 0) /* next page free */
|| (page_table[i+1].gen != from_space) /* diff. gen */
|| (page_table[i+1].region_start_offset == 0))
break;
}
/* Check that the page is now static. */
gc_assert(page_table[addr_page_index].dont_move != 0);
}
#endif // defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
/* If the given page is not write-protected, then scan it for pointers
* to younger generations or the top temp. generation, if no
* suspicious pointers are found then the page is write-protected.
*
* Care is taken to check for pointers to the current gc_alloc()
* region if it is a younger generation or the temp. generation. This
* frees the caller from doing a gc_alloc_update_page_tables(). Actually
* the gc_alloc_generation does not need to be checked as this is only
* called from scavenge_generation() when the gc_alloc generation is
* younger, so it just checks if there is a pointer to the current
* region.
*
* We return 1 if the page was write-protected, else 0. */
static int
update_page_write_prot(page_index_t page)
{
generation_index_t gen = page_table[page].gen;
long j;
int wp_it = 1;
void **page_addr = (void **)page_address(page);
long num_words = page_table[page].bytes_used / N_WORD_BYTES;
/* Shouldn't be a free page. */
gc_assert(page_allocated_p(page));
gc_assert(page_table[page].bytes_used != 0);
/* Skip if it's already write-protected, pinned, or unboxed */
if (page_table[page].write_protected
/* FIXME: What's the reason for not write-protecting pinned pages? */
|| page_table[page].dont_move
|| page_unboxed_p(page))
return (0);
/* Scan the page for pointers to younger generations or the
* top temp. generation. */
for (j = 0; j < num_words; j++) {
void *ptr = *(page_addr+j);
page_index_t index = find_page_index(ptr);
/* Check that it's in the dynamic space */
if (index != -1)
if (/* Does it point to a younger or the temp. generation? */
(page_allocated_p(index)
&& (page_table[index].bytes_used != 0)
&& ((page_table[index].gen < gen)
|| (page_table[index].gen == SCRATCH_GENERATION)))
/* Or does it point within a current gc_alloc() region? */
|| ((boxed_region.start_addr <= ptr)
&& (ptr <= boxed_region.free_pointer))
|| ((unboxed_region.start_addr <= ptr)
&& (ptr <= unboxed_region.free_pointer))) {
wp_it = 0;
break;
}
}
if (wp_it == 1) {
/* Write-protect the page. */
/*FSHOW((stderr, "/write-protecting page %d gen %d\n", page, gen));*/
os_protect((void *)page_addr,
PAGE_BYTES,
OS_VM_PROT_READ|OS_VM_PROT_EXECUTE);
/* Note the page as protected in the page tables. */
page_table[page].write_protected = 1;
}
return (wp_it);
}
/* Scavenge all generations from FROM to TO, inclusive, except for
* new_space which needs special handling, as new objects may be
* added which are not checked here - use scavenge_newspace generation.
*
* Write-protected pages should not have any pointers to the
* from_space so do need scavenging; thus write-protected pages are
* not always scavenged. There is some code to check that these pages
* are not written; but to check fully the write-protected pages need
* to be scavenged by disabling the code to skip them.
*
* Under the current scheme when a generation is GCed the younger
* generations will be empty. So, when a generation is being GCed it
* is only necessary to scavenge the older generations for pointers
* not the younger. So a page that does not have pointers to younger
* generations does not need to be scavenged.
*
* The write-protection can be used to note pages that don't have
* pointers to younger pages. But pages can be written without having
* pointers to younger generations. After the pages are scavenged here
* they can be scanned for pointers to younger generations and if
* there are none the page can be write-protected.
*
* One complication is when the newspace is the top temp. generation.
*
* Enabling SC_GEN_CK scavenges the write-protected pages and checks
* that none were written, which they shouldn't be as they should have
* no pointers to younger generations. This breaks down for weak
* pointers as the objects contain a link to the next and are written
* if a weak pointer is scavenged. Still it's a useful check. */
static void
scavenge_generations(generation_index_t from, generation_index_t to)
{
page_index_t i;
int num_wp = 0;
#define SC_GEN_CK 0
#if SC_GEN_CK
/* Clear the write_protected_cleared flags on all pages. */
for (i = 0; i < page_table_pages; i++)
page_table[i].write_protected_cleared = 0;
#endif
for (i = 0; i < last_free_page; i++) {
generation_index_t generation = page_table[i].gen;
if (page_boxed_p(i)
&& (page_table[i].bytes_used != 0)
&& (generation != new_space)
&& (generation >= from)
&& (generation <= to)) {
page_index_t last_page,j;
int write_protected=1;
/* This should be the start of a region */
gc_assert(page_table[i].region_start_offset == 0);
/* Now work forward until the end of the region */
for (last_page = i; ; last_page++) {
write_protected =
write_protected && page_table[last_page].write_protected;
if ((page_table[last_page].bytes_used < PAGE_BYTES)
/* Or it is PAGE_BYTES and is the last in the block */
|| (!page_boxed_p(last_page+1))
|| (page_table[last_page+1].bytes_used == 0)
|| (page_table[last_page+1].gen != generation)
|| (page_table[last_page+1].region_start_offset == 0))
break;
}
if (!write_protected) {
scavenge(page_address(i),
((unsigned long)(page_table[last_page].bytes_used
+ npage_bytes(last_page-i)))
/N_WORD_BYTES);
/* Now scan the pages and write protect those that
* don't have pointers to younger generations. */
if (enable_page_protection) {
for (j = i; j <= last_page; j++) {
num_wp += update_page_write_prot(j);
}
}
if ((gencgc_verbose > 1) && (num_wp != 0)) {
FSHOW((stderr,
"/write protected %d pages within generation %d\n",
num_wp, generation));
}
}
i = last_page;
}
}
#if SC_GEN_CK
/* Check that none of the write_protected pages in this generation
* have been written to. */
for (i = 0; i < page_table_pages; i++) {
if (page_allocated_p(i)
&& (page_table[i].bytes_used != 0)
&& (page_table[i].gen == generation)
&& (page_table[i].write_protected_cleared != 0)) {
FSHOW((stderr, "/scavenge_generation() %d\n", generation));
FSHOW((stderr,
"/page bytes_used=%d region_start_offset=%lu dont_move=%d\n",
page_table[i].bytes_used,
page_table[i].region_start_offset,
page_table[i].dont_move));
lose("write to protected page %d in scavenge_generation()\n", i);
}
}
#endif
}
/* Scavenge a newspace generation. As it is scavenged new objects may
* be allocated to it; these will also need to be scavenged. This
* repeats until there are no more objects unscavenged in the
* newspace generation.
*
* To help improve the efficiency, areas written are recorded by
* gc_alloc() and only these scavenged. Sometimes a little more will be
* scavenged, but this causes no harm. An easy check is done that the
* scavenged bytes equals the number allocated in the previous
* scavenge.
*
* Write-protected pages are not scanned except if they are marked
* dont_move in which case they may have been promoted and still have
* pointers to the from space.
*
* Write-protected pages could potentially be written by alloc however
* to avoid having to handle re-scavenging of write-protected pages
* gc_alloc() does not write to write-protected pages.
*
* New areas of objects allocated are recorded alternatively in the two
* new_areas arrays below. */
static struct new_area new_areas_1[NUM_NEW_AREAS];
static struct new_area new_areas_2[NUM_NEW_AREAS];
/* Do one full scan of the new space generation. This is not enough to
* complete the job as new objects may be added to the generation in
* the process which are not scavenged. */
static void
scavenge_newspace_generation_one_scan(generation_index_t generation)
{
page_index_t i;
FSHOW((stderr,
"/starting one full scan of newspace generation %d\n",
generation));
for (i = 0; i < last_free_page; i++) {
/* Note that this skips over open regions when it encounters them. */
if (page_boxed_p(i)
&& (page_table[i].bytes_used != 0)
&& (page_table[i].gen == generation)
&& ((page_table[i].write_protected == 0)
/* (This may be redundant as write_protected is now
* cleared before promotion.) */
|| (page_table[i].dont_move == 1))) {
page_index_t last_page;
int all_wp=1;
/* The scavenge will start at the region_start_offset of
* page i.
*
* We need to find the full extent of this contiguous
* block in case objects span pages.
*
* Now work forward until the end of this contiguous area
* is found. A small area is preferred as there is a
* better chance of its pages being write-protected. */
for (last_page = i; ;last_page++) {
/* If all pages are write-protected and movable,
* then no need to scavenge */
all_wp=all_wp && page_table[last_page].write_protected &&
!page_table[last_page].dont_move;
/* Check whether this is the last page in this
* contiguous block */
if ((page_table[last_page].bytes_used < PAGE_BYTES)
/* Or it is PAGE_BYTES and is the last in the block */
|| (!page_boxed_p(last_page+1))
|| (page_table[last_page+1].bytes_used == 0)
|| (page_table[last_page+1].gen != generation)
|| (page_table[last_page+1].region_start_offset == 0))
break;
}
/* Do a limited check for write-protected pages. */
if (!all_wp) {
long nwords = (((unsigned long)
(page_table[last_page].bytes_used
+ npage_bytes(last_page-i)
+ page_table[i].region_start_offset))
/ N_WORD_BYTES);
new_areas_ignore_page = last_page;
scavenge(page_region_start(i), nwords);
}
i = last_page;
}
}
FSHOW((stderr,
"/done with one full scan of newspace generation %d\n",
generation));
}
/* Do a complete scavenge of the newspace generation. */
static void
scavenge_newspace_generation(generation_index_t generation)
{
long i;
/* the new_areas array currently being written to by gc_alloc() */
struct new_area (*current_new_areas)[] = &new_areas_1;
long current_new_areas_index;
/* the new_areas created by the previous scavenge cycle */
struct new_area (*previous_new_areas)[] = NULL;
long previous_new_areas_index;
/* Flush the current regions updating the tables. */
gc_alloc_update_all_page_tables();
/* Turn on the recording of new areas by gc_alloc(). */
new_areas = current_new_areas;
new_areas_index = 0;
/* Don't need to record new areas that get scavenged anyway during
* scavenge_newspace_generation_one_scan. */
record_new_objects = 1;
/* Start with a full scavenge. */
scavenge_newspace_generation_one_scan(generation);
/* Record all new areas now. */
record_new_objects = 2;
/* Give a chance to weak hash tables to make other objects live.
* FIXME: The algorithm implemented here for weak hash table gcing
* is O(W^2+N) as Bruno Haible warns in
* http://www.haible.de/bruno/papers/cs/weak/WeakDatastructures-writeup.html
* see "Implementation 2". */
scav_weak_hash_tables();
/* Flush the current regions updating the tables. */
gc_alloc_update_all_page_tables();
/* Grab new_areas_index. */
current_new_areas_index = new_areas_index;
/*FSHOW((stderr,
"The first scan is finished; current_new_areas_index=%d.\n",
current_new_areas_index));*/
while (current_new_areas_index > 0) {
/* Move the current to the previous new areas */
previous_new_areas = current_new_areas;
previous_new_areas_index = current_new_areas_index;
/* Scavenge all the areas in previous new areas. Any new areas
* allocated are saved in current_new_areas. */
/* Allocate an array for current_new_areas; alternating between
* new_areas_1 and 2 */
if (previous_new_areas == &new_areas_1)
current_new_areas = &new_areas_2;
else
current_new_areas = &new_areas_1;
/* Set up for gc_alloc(). */
new_areas = current_new_areas;
new_areas_index = 0;
/* Check whether previous_new_areas had overflowed. */
if (previous_new_areas_index >= NUM_NEW_AREAS) {
/* New areas of objects allocated have been lost so need to do a
* full scan to be sure! If this becomes a problem try
* increasing NUM_NEW_AREAS. */
if (gencgc_verbose) {
SHOW("new_areas overflow, doing full scavenge");
}
/* Don't need to record new areas that get scavenged
* anyway during scavenge_newspace_generation_one_scan. */
record_new_objects = 1;
scavenge_newspace_generation_one_scan(generation);
/* Record all new areas now. */
record_new_objects = 2;
scav_weak_hash_tables();
/* Flush the current regions updating the tables. */
gc_alloc_update_all_page_tables();
} else {
/* Work through previous_new_areas. */
for (i = 0; i < previous_new_areas_index; i++) {
page_index_t page = (*previous_new_areas)[i].page;
size_t offset = (*previous_new_areas)[i].offset;
size_t size = (*previous_new_areas)[i].size / N_WORD_BYTES;
gc_assert((*previous_new_areas)[i].size % N_WORD_BYTES == 0);
scavenge(page_address(page)+offset, size);
}
scav_weak_hash_tables();
/* Flush the current regions updating the tables. */
gc_alloc_update_all_page_tables();
}
current_new_areas_index = new_areas_index;
/*FSHOW((stderr,
"The re-scan has finished; current_new_areas_index=%d.\n",
current_new_areas_index));*/
}
/* Turn off recording of areas allocated by gc_alloc(). */
record_new_objects = 0;
#if SC_NS_GEN_CK
/* Check that none of the write_protected pages in this generation
* have been written to. */
for (i = 0; i < page_table_pages; i++) {
if (page_allocated_p(i)
&& (page_table[i].bytes_used != 0)
&& (page_table[i].gen == generation)
&& (page_table[i].write_protected_cleared != 0)
&& (page_table[i].dont_move == 0)) {
lose("write protected page %d written to in scavenge_newspace_generation\ngeneration=%d dont_move=%d\n",
i, generation, page_table[i].dont_move);
}
}
#endif
}
/* Un-write-protect all the pages in from_space. This is done at the
* start of a GC else there may be many page faults while scavenging
* the newspace (I've seen drive the system time to 99%). These pages
* would need to be unprotected anyway before unmapping in
* free_oldspace; not sure what effect this has on paging.. */
static void
unprotect_oldspace(void)
{
page_index_t i;
for (i = 0; i < last_free_page; i++) {
if (page_allocated_p(i)
&& (page_table[i].bytes_used != 0)
&& (page_table[i].gen == from_space)) {
void *page_start;
page_start = (void *)page_address(i);
/* Remove any write-protection. We should be able to rely
* on the write-protect flag to avoid redundant calls. */
if (page_table[i].write_protected) {
os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
page_table[i].write_protected = 0;
}
}
}
}
/* Work through all the pages and free any in from_space. This
* assumes that all objects have been copied or promoted to an older
* generation. Bytes_allocated and the generation bytes_allocated
* counter are updated. The number of bytes freed is returned. */
static unsigned long
free_oldspace(void)
{
unsigned long bytes_freed = 0;
page_index_t first_page, last_page;
first_page = 0;
do {
/* Find a first page for the next region of pages. */
while ((first_page < last_free_page)
&& (page_free_p(first_page)
|| (page_table[first_page].bytes_used == 0)
|| (page_table[first_page].gen != from_space)))
first_page++;
if (first_page >= last_free_page)
break;
/* Find the last page of this region. */
last_page = first_page;
do {
/* Free the page. */
bytes_freed += page_table[last_page].bytes_used;
generations[page_table[last_page].gen].bytes_allocated -=
page_table[last_page].bytes_used;
page_table[last_page].allocated = FREE_PAGE_FLAG;
page_table[last_page].bytes_used = 0;
/* Remove any write-protection. We should be able to rely
* on the write-protect flag to avoid redundant calls. */
{
void *page_start = (void *)page_address(last_page);
if (page_table[last_page].write_protected) {
os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
page_table[last_page].write_protected = 0;
}
}
last_page++;
}
while ((last_page < last_free_page)
&& page_allocated_p(last_page)
&& (page_table[last_page].bytes_used != 0)
&& (page_table[last_page].gen == from_space));
#ifdef READ_PROTECT_FREE_PAGES
os_protect(page_address(first_page),
npage_bytes(last_page-first_page),
OS_VM_PROT_NONE);
#endif
first_page = last_page;
} while (first_page < last_free_page);
bytes_allocated -= bytes_freed;
return bytes_freed;
}
#if 0
/* Print some information about a pointer at the given address. */
static void
print_ptr(lispobj *addr)
{
/* If addr is in the dynamic space then out the page information. */
page_index_t pi1 = find_page_index((void*)addr);
if (pi1 != -1)
fprintf(stderr," %x: page %d alloc %d gen %d bytes_used %d offset %lu dont_move %d\n",
(unsigned long) addr,
pi1,
page_table[pi1].allocated,
page_table[pi1].gen,
page_table[pi1].bytes_used,
page_table[pi1].region_start_offset,
page_table[pi1].dont_move);
fprintf(stderr," %x %x %x %x (%x) %x %x %x %x\n",
*(addr-4),
*(addr-3),
*(addr-2),
*(addr-1),
*(addr-0),
*(addr+1),
*(addr+2),
*(addr+3),
*(addr+4));
}
#endif
static void
verify_space(lispobj *start, size_t words)
{
int is_in_dynamic_space = (find_page_index((void*)start) != -1);
int is_in_readonly_space =
(READ_ONLY_SPACE_START <= (unsigned long)start &&
(unsigned long)start < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
while (words > 0) {
size_t count = 1;
lispobj thing = *(lispobj*)start;
if (is_lisp_pointer(thing)) {
page_index_t page_index = find_page_index((void*)thing);
long to_readonly_space =
(READ_ONLY_SPACE_START <= thing &&
thing < SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0));
long to_static_space =
(STATIC_SPACE_START <= thing &&
thing < SymbolValue(STATIC_SPACE_FREE_POINTER,0));
/* Does it point to the dynamic space? */
if (page_index != -1) {
/* If it's within the dynamic space it should point to a used
* page. XX Could check the offset too. */
if (page_allocated_p(page_index)
&& (page_table[page_index].bytes_used == 0))
lose ("Ptr %x @ %x sees free page.\n", thing, start);
/* Check that it doesn't point to a forwarding pointer! */
if (*((lispobj *)native_pointer(thing)) == 0x01) {
lose("Ptr %x @ %x sees forwarding ptr.\n", thing, start);
}
/* Check that its not in the RO space as it would then be a
* pointer from the RO to the dynamic space. */
if (is_in_readonly_space) {
lose("ptr to dynamic space %x from RO space %x\n",
thing, start);
}
/* Does it point to a plausible object? This check slows
* it down a lot (so it's commented out).
*
* "a lot" is serious: it ate 50 minutes cpu time on
* my duron 950 before I came back from lunch and
* killed it.
*
* FIXME: Add a variable to enable this
* dynamically. */
/*
if (!possibly_valid_dynamic_space_pointer((lispobj *)thing)) {
lose("ptr %x to invalid object %x\n", thing, start);
}
*/
} else {
/* Verify that it points to another valid space. */
if (!to_readonly_space && !to_static_space) {
lose("Ptr %x @ %x sees junk.\n", thing, start);
}
}
} else {
if (!(fixnump(thing))) {
/* skip fixnums */
switch(widetag_of(*start)) {
/* boxed objects */
case SIMPLE_VECTOR_WIDETAG:
case RATIO_WIDETAG:
case COMPLEX_WIDETAG:
case SIMPLE_ARRAY_WIDETAG:
case COMPLEX_BASE_STRING_WIDETAG:
#ifdef COMPLEX_CHARACTER_STRING_WIDETAG
case COMPLEX_CHARACTER_STRING_WIDETAG:
#endif
case COMPLEX_VECTOR_NIL_WIDETAG:
case COMPLEX_BIT_VECTOR_WIDETAG:
case COMPLEX_VECTOR_WIDETAG:
case COMPLEX_ARRAY_WIDETAG:
case CLOSURE_HEADER_WIDETAG:
case FUNCALLABLE_INSTANCE_HEADER_WIDETAG:
case VALUE_CELL_HEADER_WIDETAG:
case SYMBOL_HEADER_WIDETAG:
case CHARACTER_WIDETAG:
#if N_WORD_BITS == 64
case SINGLE_FLOAT_WIDETAG:
#endif
case UNBOUND_MARKER_WIDETAG:
case FDEFN_WIDETAG:
count = 1;
break;
case INSTANCE_HEADER_WIDETAG:
{
lispobj nuntagged;
long ntotal = HeaderValue(thing);
lispobj layout = ((struct instance *)start)->slots[0];
if (!layout) {
count = 1;
break;
}
nuntagged = ((struct layout *)
native_pointer(layout))->n_untagged_slots;
verify_space(start + 1,
ntotal - fixnum_value(nuntagged));
count = ntotal + 1;
break;
}
case CODE_HEADER_WIDETAG:
{
lispobj object = *start;
struct code *code;
long nheader_words, ncode_words, nwords;
lispobj fheaderl;
struct simple_fun *fheaderp;
code = (struct code *) start;
/* Check that it's not in the dynamic space.
* FIXME: Isn't is supposed to be OK for code
* objects to be in the dynamic space these days? */
if (is_in_dynamic_space
/* It's ok if it's byte compiled code. The trace
* table offset will be a fixnum if it's x86
* compiled code - check.
*
* FIXME: #^#@@! lack of abstraction here..
* This line can probably go away now that
* there's no byte compiler, but I've got
* too much to worry about right now to try
* to make sure. -- WHN 2001-10-06 */
&& fixnump(code->trace_table_offset)
/* Only when enabled */
&& verify_dynamic_code_check) {
FSHOW((stderr,
"/code object at %x in the dynamic space\n",
start));
}
ncode_words = fixnum_value(code->code_size);
nheader_words = HeaderValue(object);
nwords = ncode_words + nheader_words;
nwords = CEILING(nwords, 2);
/* Scavenge the boxed section of the code data block */
verify_space(start + 1, nheader_words - 1);
/* Scavenge the boxed section of each function
* object in the code data block. */
fheaderl = code->entry_points;
while (fheaderl != NIL) {
fheaderp =
(struct simple_fun *) native_pointer(fheaderl);
gc_assert(widetag_of(fheaderp->header) ==
SIMPLE_FUN_HEADER_WIDETAG);
verify_space(&fheaderp->name, 1);
verify_space(&fheaderp->arglist, 1);
verify_space(&fheaderp->type, 1);
fheaderl = fheaderp->next;
}
count = nwords;
break;
}
/* unboxed objects */
case BIGNUM_WIDETAG:
#if N_WORD_BITS != 64
case SINGLE_FLOAT_WIDETAG:
#endif
case DOUBLE_FLOAT_WIDETAG:
#ifdef COMPLEX_LONG_FLOAT_WIDETAG
case LONG_FLOAT_WIDETAG:
#endif
#ifdef COMPLEX_SINGLE_FLOAT_WIDETAG
case COMPLEX_SINGLE_FLOAT_WIDETAG:
#endif
#ifdef COMPLEX_DOUBLE_FLOAT_WIDETAG
case COMPLEX_DOUBLE_FLOAT_WIDETAG:
#endif
#ifdef COMPLEX_LONG_FLOAT_WIDETAG
case COMPLEX_LONG_FLOAT_WIDETAG:
#endif
case SIMPLE_BASE_STRING_WIDETAG:
#ifdef SIMPLE_CHARACTER_STRING_WIDETAG
case SIMPLE_CHARACTER_STRING_WIDETAG:
#endif
case SIMPLE_BIT_VECTOR_WIDETAG:
case SIMPLE_ARRAY_NIL_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_2_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_4_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_7_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_8_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_15_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_16_WIDETAG:
#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG
case SIMPLE_ARRAY_UNSIGNED_BYTE_29_WIDETAG:
#endif
case SIMPLE_ARRAY_UNSIGNED_BYTE_31_WIDETAG:
case SIMPLE_ARRAY_UNSIGNED_BYTE_32_WIDETAG:
#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG
case SIMPLE_ARRAY_UNSIGNED_BYTE_60_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG
case SIMPLE_ARRAY_UNSIGNED_BYTE_63_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG
case SIMPLE_ARRAY_UNSIGNED_BYTE_64_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_8_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_16_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_30_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_32_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_61_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG
case SIMPLE_ARRAY_SIGNED_BYTE_64_WIDETAG:
#endif
case SIMPLE_ARRAY_SINGLE_FLOAT_WIDETAG:
case SIMPLE_ARRAY_DOUBLE_FLOAT_WIDETAG:
#ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
case SIMPLE_ARRAY_LONG_FLOAT_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG
case SIMPLE_ARRAY_COMPLEX_SINGLE_FLOAT_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG
case SIMPLE_ARRAY_COMPLEX_DOUBLE_FLOAT_WIDETAG:
#endif
#ifdef SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG
case SIMPLE_ARRAY_COMPLEX_LONG_FLOAT_WIDETAG:
#endif
case SAP_WIDETAG:
case WEAK_POINTER_WIDETAG:
#ifdef LUTEX_WIDETAG
case LUTEX_WIDETAG:
#endif
#ifdef NO_TLS_VALUE_MARKER_WIDETAG
case NO_TLS_VALUE_MARKER_WIDETAG:
#endif
count = (sizetab[widetag_of(*start)])(start);
break;
default:
lose("Unhandled widetag 0x%x at 0x%x\n",
widetag_of(*start), start);
}
}
}
start += count;
words -= count;
}
}
static void
verify_gc(void)
{
/* FIXME: It would be nice to make names consistent so that
* foo_size meant size *in* *bytes* instead of size in some
* arbitrary units. (Yes, this caused a bug, how did you guess?:-)
* Some counts of lispobjs are called foo_count; it might be good
* to grep for all foo_size and rename the appropriate ones to
* foo_count. */
long read_only_space_size =
(lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER,0)
- (lispobj*)READ_ONLY_SPACE_START;
long static_space_size =
(lispobj*)SymbolValue(STATIC_SPACE_FREE_POINTER,0)
- (lispobj*)STATIC_SPACE_START;
struct thread *th;
for_each_thread(th) {
long binding_stack_size =
(lispobj*)get_binding_stack_pointer(th)
- (lispobj*)th->binding_stack_start;
verify_space(th->binding_stack_start, binding_stack_size);
}
verify_space((lispobj*)READ_ONLY_SPACE_START, read_only_space_size);
verify_space((lispobj*)STATIC_SPACE_START , static_space_size);
}
static void
verify_generation(generation_index_t generation)
{
page_index_t i;
for (i = 0; i < last_free_page; i++) {
if (page_allocated_p(i)
&& (page_table[i].bytes_used != 0)
&& (page_table[i].gen == generation)) {
page_index_t last_page;
int region_allocation = page_table[i].allocated;
/* This should be the start of a contiguous block */
gc_assert(page_table[i].region_start_offset == 0);
/* Need to find the full extent of this contiguous block in case
objects span pages. */
/* Now work forward until the end of this contiguous area is
found. */
for (last_page = i; ;last_page++)
/* Check whether this is the last page in this contiguous
* block. */
if ((page_table[last_page].bytes_used < PAGE_BYTES)
/* Or it is PAGE_BYTES and is the last in the block */
|| (page_table[last_page+1].allocated != region_allocation)
|| (page_table[last_page+1].bytes_used == 0)
|| (page_table[last_page+1].gen != generation)
|| (page_table[last_page+1].region_start_offset == 0))
break;
verify_space(page_address(i),
((unsigned long)
(page_table[last_page].bytes_used
+ npage_bytes(last_page-i)))
/ N_WORD_BYTES);
i = last_page;
}
}
}
/* Check that all the free space is zero filled. */
static void
verify_zero_fill(void)
{
page_index_t page;
for (page = 0; page < last_free_page; page++) {
if (page_free_p(page)) {
/* The whole page should be zero filled. */
long *start_addr = (long *)page_address(page);
long size = 1024;
long i;
for (i = 0; i < size; i++) {
if (start_addr[i] != 0) {
lose("free page not zero at %x\n", start_addr + i);
}
}
} else {
long free_bytes = PAGE_BYTES - page_table[page].bytes_used;
if (free_bytes > 0) {
long *start_addr = (long *)((unsigned long)page_address(page)
+ page_table[page].bytes_used);
long size = free_bytes / N_WORD_BYTES;
long i;
for (i = 0; i < size; i++) {
if (start_addr[i] != 0) {
lose("free region not zero at %x\n", start_addr + i);
}
}
}
}
}
}
/* External entry point for verify_zero_fill */
void
gencgc_verify_zero_fill(void)
{
/* Flush the alloc regions updating the tables. */
gc_alloc_update_all_page_tables();
SHOW("verifying zero fill");
verify_zero_fill();
}
static void
verify_dynamic_space(void)
{
generation_index_t i;
for (i = 0; i <= HIGHEST_NORMAL_GENERATION; i++)
verify_generation(i);
if (gencgc_enable_verify_zero_fill)
verify_zero_fill();
}
/* Write-protect all the dynamic boxed pages in the given generation. */
static void
write_protect_generation_pages(generation_index_t generation)
{
page_index_t start;
gc_assert(generation < SCRATCH_GENERATION);
for (start = 0; start < last_free_page; start++) {
if (protect_page_p(start, generation)) {
void *page_start;
page_index_t last;
/* Note the page as protected in the page tables. */
page_table[start].write_protected = 1;
for (last = start + 1; last < last_free_page; last++) {
if (!protect_page_p(last, generation))
break;
page_table[last].write_protected = 1;
}
page_start = (void *)page_address(start);
os_protect(page_start,
npage_bytes(last - start),
OS_VM_PROT_READ | OS_VM_PROT_EXECUTE);
start = last;
}
}
if (gencgc_verbose > 1) {
FSHOW((stderr,
"/write protected %d of %d pages in generation %d\n",
count_write_protect_generation_pages(generation),
count_generation_pages(generation),
generation));
}
}
#if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
static void
scavenge_control_stack()
{
unsigned long control_stack_size;
/* This is going to be a big problem when we try to port threads
* to PPC... CLH */
struct thread *th = arch_os_get_current_thread();
lispobj *control_stack =
(lispobj *)(th->control_stack_start);
control_stack_size = current_control_stack_pointer - control_stack;
scavenge(control_stack, control_stack_size);
}
/* Scavenging Interrupt Contexts */
static int boxed_registers[] = BOXED_REGISTERS;
static void
scavenge_interrupt_context(os_context_t * context)
{
int i;
#ifdef reg_LIP
unsigned long lip;
unsigned long lip_offset;
int lip_register_pair;
#endif
unsigned long pc_code_offset;
#ifdef ARCH_HAS_LINK_REGISTER
unsigned long lr_code_offset;
#endif
#ifdef ARCH_HAS_NPC_REGISTER
unsigned long npc_code_offset;
#endif
#ifdef reg_LIP
/* Find the LIP's register pair and calculate it's offset */
/* before we scavenge the context. */
/*
* I (RLT) think this is trying to find the boxed register that is
* closest to the LIP address, without going past it. Usually, it's
* reg_CODE or reg_LRA. But sometimes, nothing can be found.
*/
lip = *os_context_register_addr(context, reg_LIP);
lip_offset = 0x7FFFFFFF;
lip_register_pair = -1;
for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
unsigned long reg;
long offset;
int index;
index = boxed_registers[i];
reg = *os_context_register_addr(context, index);
if ((reg & ~((1L<<N_LOWTAG_BITS)-1)) <= lip) {
offset = lip - reg;
if (offset < lip_offset) {
lip_offset = offset;
lip_register_pair = index;
}
}
}
#endif /* reg_LIP */
/* Compute the PC's offset from the start of the CODE */
/* register. */
pc_code_offset = *os_context_pc_addr(context)
- *os_context_register_addr(context, reg_CODE);
#ifdef ARCH_HAS_NPC_REGISTER
npc_code_offset = *os_context_npc_addr(context)
- *os_context_register_addr(context, reg_CODE);
#endif /* ARCH_HAS_NPC_REGISTER */
#ifdef ARCH_HAS_LINK_REGISTER
lr_code_offset =
*os_context_lr_addr(context) -
*os_context_register_addr(context, reg_CODE);
#endif
/* Scanvenge all boxed registers in the context. */
for (i = 0; i < (sizeof(boxed_registers) / sizeof(int)); i++) {
int index;
lispobj foo;
index = boxed_registers[i];
foo = *os_context_register_addr(context, index);
scavenge(&foo, 1);
*os_context_register_addr(context, index) = foo;
scavenge((lispobj*) &(*os_context_register_addr(context, index)), 1);
}
#ifdef reg_LIP
/* Fix the LIP */
/*
* But what happens if lip_register_pair is -1?
* *os_context_register_addr on Solaris (see
* solaris_register_address in solaris-os.c) will return
* &context->uc_mcontext.gregs[2]. But gregs[2] is REG_nPC. Is
* that what we really want? My guess is that that is not what we
* want, so if lip_register_pair is -1, we don't touch reg_LIP at
* all. But maybe it doesn't really matter if LIP is trashed?
*/
if (lip_register_pair >= 0) {
*os_context_register_addr(context, reg_LIP) =
*os_context_register_addr(context, lip_register_pair)
+ lip_offset;
}
#endif /* reg_LIP */
/* Fix the PC if it was in from space */
if (from_space_p(*os_context_pc_addr(context)))
*os_context_pc_addr(context) =
*os_context_register_addr(context, reg_CODE) + pc_code_offset;
#ifdef ARCH_HAS_LINK_REGISTER
/* Fix the LR ditto; important if we're being called from
* an assembly routine that expects to return using blr, otherwise
* harmless */
if (from_space_p(*os_context_lr_addr(context)))
*os_context_lr_addr(context) =
*os_context_register_addr(context, reg_CODE) + lr_code_offset;
#endif
#ifdef ARCH_HAS_NPC_REGISTER
if (from_space_p(*os_context_npc_addr(context)))
*os_context_npc_addr(context) =
*os_context_register_addr(context, reg_CODE) + npc_code_offset;
#endif /* ARCH_HAS_NPC_REGISTER */
}
void
scavenge_interrupt_contexts(void)
{
int i, index;
os_context_t *context;
struct thread *th=arch_os_get_current_thread();
index = fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,0));
#if defined(DEBUG_PRINT_CONTEXT_INDEX)
printf("Number of active contexts: %d\n", index);
#endif
for (i = 0; i < index; i++) {
context = th->interrupt_contexts[i];
scavenge_interrupt_context(context);
}
}
#endif
#if defined(LISP_FEATURE_SB_THREAD)
static void
preserve_context_registers (os_context_t *c)
{
void **ptr;
/* On Darwin the signal context isn't a contiguous block of memory,
* so just preserve_pointering its contents won't be sufficient.
*/
#if defined(LISP_FEATURE_DARWIN)
#if defined LISP_FEATURE_X86
preserve_pointer((void*)*os_context_register_addr(c,reg_EAX));
preserve_pointer((void*)*os_context_register_addr(c,reg_ECX));
preserve_pointer((void*)*os_context_register_addr(c,reg_EDX));
preserve_pointer((void*)*os_context_register_addr(c,reg_EBX));
preserve_pointer((void*)*os_context_register_addr(c,reg_ESI));
preserve_pointer((void*)*os_context_register_addr(c,reg_EDI));
preserve_pointer((void*)*os_context_pc_addr(c));
#elif defined LISP_FEATURE_X86_64
preserve_pointer((void*)*os_context_register_addr(c,reg_RAX));
preserve_pointer((void*)*os_context_register_addr(c,reg_RCX));
preserve_pointer((void*)*os_context_register_addr(c,reg_RDX));
preserve_pointer((void*)*os_context_register_addr(c,reg_RBX));
preserve_pointer((void*)*os_context_register_addr(c,reg_RSI));
preserve_pointer((void*)*os_context_register_addr(c,reg_RDI));
preserve_pointer((void*)*os_context_register_addr(c,reg_R8));
preserve_pointer((void*)*os_context_register_addr(c,reg_R9));
preserve_pointer((void*)*os_context_register_addr(c,reg_R10));
preserve_pointer((void*)*os_context_register_addr(c,reg_R11));
preserve_pointer((void*)*os_context_register_addr(c,reg_R12));
preserve_pointer((void*)*os_context_register_addr(c,reg_R13));
preserve_pointer((void*)*os_context_register_addr(c,reg_R14));
preserve_pointer((void*)*os_context_register_addr(c,reg_R15));
preserve_pointer((void*)*os_context_pc_addr(c));
#else
#error "preserve_context_registers needs to be tweaked for non-x86 Darwin"
#endif
#endif
for(ptr = ((void **)(c+1))-1; ptr>=(void **)c; ptr--) {
preserve_pointer(*ptr);
}
}
#endif
/* Garbage collect a generation. If raise is 0 then the remains of the
* generation are not raised to the next generation. */
static void
garbage_collect_generation(generation_index_t generation, int raise)
{
unsigned long bytes_freed;
page_index_t i;
unsigned long static_space_size;
#if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
struct thread *th;
#endif
gc_assert(generation <= HIGHEST_NORMAL_GENERATION);
/* The oldest generation can't be raised. */
gc_assert((generation != HIGHEST_NORMAL_GENERATION) || (raise == 0));
/* Check if weak hash tables were processed in the previous GC. */
gc_assert(weak_hash_tables == NULL);
/* Initialize the weak pointer list. */
weak_pointers = NULL;
#ifdef LUTEX_WIDETAG
unmark_lutexes(generation);
#endif
/* When a generation is not being raised it is transported to a
* temporary generation (NUM_GENERATIONS), and lowered when
* done. Set up this new generation. There should be no pages
* allocated to it yet. */
if (!raise) {
gc_assert(generations[SCRATCH_GENERATION].bytes_allocated == 0);
}
/* Set the global src and dest. generations */
from_space = generation;
if (raise)
new_space = generation+1;
else
new_space = SCRATCH_GENERATION;
/* Change to a new space for allocation, resetting the alloc_start_page */
gc_alloc_generation = new_space;
generations[new_space].alloc_start_page = 0;
generations[new_space].alloc_unboxed_start_page = 0;
generations[new_space].alloc_large_start_page = 0;
generations[new_space].alloc_large_unboxed_start_page = 0;
/* Before any pointers are preserved, the dont_move flags on the
* pages need to be cleared. */
for (i = 0; i < last_free_page; i++)
if(page_table[i].gen==from_space)
page_table[i].dont_move = 0;
/* Un-write-protect the old-space pages. This is essential for the
* promoted pages as they may contain pointers into the old-space
* which need to be scavenged. It also helps avoid unnecessary page
* faults as forwarding pointers are written into them. They need to
* be un-protected anyway before unmapping later. */
unprotect_oldspace();
/* Scavenge the stacks' conservative roots. */
/* there are potentially two stacks for each thread: the main
* stack, which may contain Lisp pointers, and the alternate stack.
* We don't ever run Lisp code on the altstack, but it may
* host a sigcontext with lisp objects in it */
/* what we need to do: (1) find the stack pointer for the main
* stack; scavenge it (2) find the interrupt context on the
* alternate stack that might contain lisp values, and scavenge
* that */
/* we assume that none of the preceding applies to the thread that
* initiates GC. If you ever call GC from inside an altstack
* handler, you will lose. */
#if defined(LISP_FEATURE_X86) || defined(LISP_FEATURE_X86_64)
/* And if we're saving a core, there's no point in being conservative. */
if (conservative_stack) {
for_each_thread(th) {
void **ptr;
void **esp=(void **)-1;
#ifdef LISP_FEATURE_SB_THREAD
long i,free;
if(th==arch_os_get_current_thread()) {
/* Somebody is going to burn in hell for this, but casting
* it in two steps shuts gcc up about strict aliasing. */
esp = (void **)((void *)&raise);
} else {
void **esp1;
free=fixnum_value(SymbolValue(FREE_INTERRUPT_CONTEXT_INDEX,th));
for(i=free-1;i>=0;i--) {
os_context_t *c=th->interrupt_contexts[i];
esp1 = (void **) *os_context_register_addr(c,reg_SP);
if (esp1>=(void **)th->control_stack_start &&
esp1<(void **)th->control_stack_end) {
if(esp1<esp) esp=esp1;
preserve_context_registers(c);
}
}
}
#else
esp = (void **)((void *)&raise);
#endif
for (ptr = ((void **)th->control_stack_end)-1; ptr >= esp; ptr--) {
preserve_pointer(*ptr);
}
}
}
#endif
#ifdef QSHOW
if (gencgc_verbose > 1) {
long num_dont_move_pages = count_dont_move_pages();
fprintf(stderr,
"/non-movable pages due to conservative pointers = %d (%d bytes)\n",
num_dont_move_pages,
npage_bytes(num_dont_move_pages));
}
#endif
/* Scavenge all the rest of the roots. */
#if !defined(LISP_FEATURE_X86) && !defined(LISP_FEATURE_X86_64)
/*
* If not x86, we need to scavenge the interrupt context(s) and the
* control stack.
*/
scavenge_interrupt_contexts();
scavenge_control_stack();
#endif
/* Scavenge the Lisp functions of the interrupt handlers, taking
* care to avoid SIG_DFL and SIG_IGN. */
for (i = 0; i < NSIG; i++) {
union interrupt_handler handler = interrupt_handlers[i];
if (!ARE_SAME_HANDLER(handler.c, SIG_IGN) &&
!ARE_SAME_HANDLER(handler.c, SIG_DFL)) {
scavenge((lispobj *)(interrupt_handlers + i), 1);
}
}
/* Scavenge the binding stacks. */
{
struct thread *th;
for_each_thread(th) {
long len= (lispobj *)get_binding_stack_pointer(th) -
th->binding_stack_start;
scavenge((lispobj *) th->binding_stack_start,len);
#ifdef LISP_FEATURE_SB_THREAD
/* do the tls as well */
len=fixnum_value(SymbolValue(FREE_TLS_INDEX,0)) -
(sizeof (struct thread))/(sizeof (lispobj));
scavenge((lispobj *) (th+1),len);
#endif
}
}
/* The original CMU CL code had scavenge-read-only-space code
* controlled by the Lisp-level variable
* *SCAVENGE-READ-ONLY-SPACE*. It was disabled by default, and it
* wasn't documented under what circumstances it was useful or
* safe to turn it on, so it's been turned off in SBCL. If you
* want/need this functionality, and can test and document it,
* please submit a patch. */
#if 0
if (SymbolValue(SCAVENGE_READ_ONLY_SPACE) != NIL) {
unsigned long read_only_space_size =
(lispobj*)SymbolValue(READ_ONLY_SPACE_FREE_POINTER) -
(lispobj*)READ_ONLY_SPACE_START;
FSHOW((stderr,
"/scavenge read only space: %d bytes\n",
read_only_space_size * sizeof(lispobj)));
scavenge( (lispobj *) READ_ONLY_SPACE_START, read_only_space_size);
}
#endif
/* Scavenge static space. */
static_space_size =
(lispobj *)SymbolValue(STATIC_SPACE_FREE_POINTER,0) -
(lispobj *)STATIC_SPACE_START;
if (gencgc_verbose > 1) {
FSHOW((stderr,
"/scavenge static space: %d bytes\n",
static_space_size * sizeof(lispobj)));
}
scavenge( (lispobj *) STATIC_SPACE_START, static_space_size);
/* All generations but the generation being GCed need to be
* scavenged. The new_space generation needs special handling as
* objects may be moved in - it is handled separately below. */
scavenge_generations(generation+1, PSEUDO_STATIC_GENERATION);
/* Finally scavenge the new_space generation. Keep going until no
* more objects are moved into the new generation */
scavenge_newspace_generation(new_space);
/* FIXME: I tried reenabling this check when debugging unrelated
* GC weirdness ca. sbcl-0.6.12.45, and it failed immediately.
* Since the current GC code seems to work well, I'm guessing that
* this debugging code is just stale, but I haven't tried to
* figure it out. It should be figured out and then either made to
* work or just deleted. */
#define RESCAN_CHECK 0
#if RESCAN_CHECK
/* As a check re-scavenge the newspace once; no new objects should
* be found. */
{
long old_bytes_allocated = bytes_allocated;
long bytes_allocated;
/* Start with a full scavenge. */
scavenge_newspace_generation_one_scan(new_space);
/* Flush the current regions, updating the tables. */
gc_alloc_update_all_page_tables();
bytes_allocated = bytes_allocated - old_bytes_allocated;
if (bytes_allocated != 0) {
lose("Rescan of new_space allocated %d more bytes.\n",
bytes_allocated);
}
}
#endif
scan_weak_hash_tables();
scan_weak_pointers();
/* Flush the current regions, updating the tables. */
gc_alloc_update_all_page_tables();
/* Free the pages in oldspace, but not those marked dont_move. */
bytes_freed = free_oldspace();
/* If the GC is not raising the age then lower the generation back
* to its normal generation number */
if (!raise) {
for (i = 0; i < last_free_page; i++)
if ((page_table[i].bytes_used != 0)
&& (page_table[i].gen == SCRATCH_GENERATION))
page_table[i].gen = generation;
gc_assert(generations[generation].bytes_allocated == 0);
generations[generation].bytes_allocated =
generations[SCRATCH_GENERATION].bytes_allocated;
generations[SCRATCH_GENERATION].bytes_allocated = 0;
}
/* Reset the alloc_start_page for generation. */
generations[generation].alloc_start_page = 0;
generations[generation].alloc_unboxed_start_page = 0;
generations[generation].alloc_large_start_page = 0;
generations[generation].alloc_large_unboxed_start_page = 0;
if (generation >= verify_gens) {
if (gencgc_verbose) {
SHOW("verifying");
}
verify_gc();
verify_dynamic_space();
}
/* Set the new gc trigger for the GCed generation. */
generations[generation].gc_trigger =
generations[generation].bytes_allocated
+ generations[generation].bytes_consed_between_gc;
if (raise)
generations[generation].num_gc = 0;
else
++generations[generation].num_gc;
#ifdef LUTEX_WIDETAG
reap_lutexes(generation);
if (raise)
move_lutexes(generation, generation+1);
#endif
}
/* Update last_free_page, then SymbolValue(ALLOCATION_POINTER). */
long
update_dynamic_space_free_pointer(void)
{
page_index_t last_page = -1, i;
for (i = 0; i < last_free_page; i++)
if (page_allocated_p(i) && (page_table[i].bytes_used != 0))
last_page = i;
last_free_page = last_page+1;
set_alloc_pointer((lispobj)(page_address(last_free_page)));
return 0; /* dummy value: return something ... */
}
static void
remap_free_pages (page_index_t from, page_index_t to)
{
page_index_t first_page, last_page;
for (first_page = from; first_page <= to; first_page++) {
if (page_allocated_p(first_page) ||
(page_table[first_page].need_to_zero == 0)) {
continue;
}
last_page = first_page + 1;
while (page_free_p(last_page) &&
(last_page < to) &&
(page_table[last_page].need_to_zero == 1)) {
last_page++;
}
/* There's a mysterious Solaris/x86 problem with using mmap
* tricks for memory zeroing. See sbcl-devel thread
* "Re: patch: standalone executable redux".
*/
#if defined(LISP_FEATURE_SUNOS)
zero_pages(first_page, last_page-1);
#else
zero_pages_with_mmap(first_page, last_page-1);
#endif
first_page = last_page;
}
}
generation_index_t small_generation_limit = 1;
/* GC all generations newer than last_gen, raising the objects in each
* to the next older generation - we finish when all generations below
* last_gen are empty. Then if last_gen is due for a GC, or if
* last_gen==NUM_GENERATIONS (the scratch generation? eh?) we GC that
* too. The valid range for last_gen is: 0,1,...,NUM_GENERATIONS.
*
* We stop collecting at gencgc_oldest_gen_to_gc, even if this is less than
* last_gen (oh, and note that by default it is NUM_GENERATIONS-1) */
void
collect_garbage(generation_index_t last_gen)
{
generation_index_t gen = 0, i;
int raise;
int gen_to_wp;
/* The largest value of last_free_page seen since the time
* remap_free_pages was called. */
static page_index_t high_water_mark = 0;
FSHOW((stderr, "/entering collect_garbage(%d)\n", last_gen));
gc_active_p = 1;
if (last_gen > HIGHEST_NORMAL_GENERATION+1) {
FSHOW((stderr,
"/collect_garbage: last_gen = %d, doing a level 0 GC\n",
last_gen));
last_gen = 0;
}
/* Flush the alloc regions updating the tables. */
gc_alloc_update_all_page_tables();
/* Verify the new objects created by Lisp code. */
if (pre_verify_gen_0) {
FSHOW((stderr, "pre-checking generation 0\n"));
verify_generation(0);
}
if (gencgc_verbose > 1)
print_generation_stats(0);
do {
/* Collect the generation. */
if (gen >= gencgc_oldest_gen_to_gc) {
/* Never raise the oldest generation. */
raise = 0;
} else {
raise =
(gen < last_gen)
|| (generations[gen].num_gc >= generations[gen].trigger_age);
}
if (gencgc_verbose > 1) {
FSHOW((stderr,
"starting GC of generation %d with raise=%d alloc=%d trig=%d GCs=%d\n",
gen,
raise,
generations[gen].bytes_allocated,
generations[gen].gc_trigger,
generations[gen].num_gc));
}
/* If an older generation is being filled, then update its
* memory age. */
if (raise == 1) {
generations[gen+1].cum_sum_bytes_allocated +=
generations[gen+1].bytes_allocated;
}
garbage_collect_generation(gen, raise);
/* Reset the memory age cum_sum. */
generations[gen].cum_sum_bytes_allocated = 0;
if (gencgc_verbose > 1) {
FSHOW((stderr, "GC of generation %d finished:\n", gen));
print_generation_stats(0);
}
gen++;
} while ((gen <= gencgc_oldest_gen_to_gc)
&& ((gen < last_gen)
|| ((gen <= gencgc_oldest_gen_to_gc)
&& raise
&& (generations[gen].bytes_allocated
> generations[gen].gc_trigger)
&& (gen_av_mem_age(gen)
> generations[gen].min_av_mem_age))));
/* Now if gen-1 was raised all generations before gen are empty.
* If it wasn't raised then all generations before gen-1 are empty.
*
* Now objects within this gen's pages cannot point to younger
* generations unless they are written to. This can be exploited
* by write-protecting the pages of gen; then when younger
* generations are GCed only the pages which have been written
* need scanning. */
if (raise)
gen_to_wp = gen;
else
gen_to_wp = gen - 1;
/* There's not much point in WPing pages in generation 0 as it is
* never scavenged (except promoted pages). */
if ((gen_to_wp > 0) && enable_page_protection) {
/* Check that they are all empty. */
for (i = 0; i < gen_to_wp; i++) {
if (generations[i].bytes_allocated)
lose("trying to write-protect gen. %d when gen. %d nonempty\n",
gen_to_wp, i);
}
write_protect_generation_pages(gen_to_wp);
}
/* Set gc_alloc() back to generation 0. The current regions should
* be flushed after the above GCs. */
gc_assert((boxed_region.free_pointer - boxed_region.start_addr) == 0);
gc_alloc_generation = 0;
/* Save the high-water mark before updating last_free_page */
if (last_free_page > high_water_mark)
high_water_mark = last_free_page;
update_dynamic_space_free_pointer();
auto_gc_trigger = bytes_allocated + bytes_consed_between_gcs;
if(gencgc_verbose)
fprintf(stderr,"Next gc when %ld bytes have been consed\n",
auto_gc_trigger);
/* If we did a big GC (arbitrarily defined as gen > 1), release memory
* back to the OS.
*/
if (gen > small_generation_limit) {
if (last_free_page > high_water_mark)
high_water_mark = last_free_page;
remap_free_pages(0, high_water_mark);
high_water_mark = 0;
}
gc_active_p = 0;
SHOW("returning from collect_garbage");
}
/* This is called by Lisp PURIFY when it is finished. All live objects
* will have been moved to the RO and Static heaps. The dynamic space
* will need a full re-initialization. We don't bother having Lisp
* PURIFY flush the current gc_alloc() region, as the page_tables are
* re-initialized, and every page is zeroed to be sure. */
void
gc_free_heap(void)
{
page_index_t page;
if (gencgc_verbose > 1) {
SHOW("entering gc_free_heap");
}
for (page = 0; page < page_table_pages; page++) {
/* Skip free pages which should already be zero filled. */
if (page_allocated_p(page)) {
void *page_start, *addr;
/* Mark the page free. The other slots are assumed invalid
* when it is a FREE_PAGE_FLAG and bytes_used is 0 and it
* should not be write-protected -- except that the
* generation is used for the current region but it sets
* that up. */
page_table[page].allocated = FREE_PAGE_FLAG;
page_table[page].bytes_used = 0;
#ifndef LISP_FEATURE_WIN32 /* Pages already zeroed on win32? Not sure
* about this change. */
/* Zero the page. */
page_start = (void *)page_address(page);
/* First, remove any write-protection. */
os_protect(page_start, PAGE_BYTES, OS_VM_PROT_ALL);
page_table[page].write_protected = 0;
os_invalidate(page_start,PAGE_BYTES);
addr = os_validate(page_start,PAGE_BYTES);
if (addr == NULL || addr != page_start) {
lose("gc_free_heap: page moved, 0x%08x ==> 0x%08x\n",
page_start,
addr);
}
#else
page_table[page].write_protected = 0;
#endif
} else if (gencgc_zero_check_during_free_heap) {
/* Double-check that the page is zero filled. */
long *page_start;
page_index_t i;
gc_assert(page_free_p(page));
gc_assert(page_table[page].bytes_used == 0);
page_start = (long *)page_address(page);
for (i=0; i<1024; i++) {
if (page_start[i] != 0) {
lose("free region not zero at %x\n", page_start + i);
}
}
}
}
bytes_allocated = 0;
/* Initialize the generations. */
for (page = 0; page < NUM_GENERATIONS; page++) {
generations[page].alloc_start_page = 0;
generations[page].alloc_unboxed_start_page = 0;
generations[page].alloc_large_start_page = 0;
generations[page].alloc_large_unboxed_start_page = 0;
generations[page].bytes_allocated = 0;
generations[page].gc_trigger = 2000000;
generations[page].num_gc = 0;
generations[page].cum_sum_bytes_allocated = 0;
generations[page].lutexes = NULL;
}
if (gencgc_verbose > 1)
print_generation_stats(0);
/* Initialize gc_alloc(). */
gc_alloc_generation = 0;
gc_set_region_empty(&boxed_region);
gc_set_region_empty(&unboxed_region);
last_free_page = 0;
set_alloc_pointer((lispobj)((char *)heap_base));
if (verify_after_free_heap) {
/* Check whether purify has left any bad pointers. */
FSHOW((stderr, "checking after free_heap\n"));
verify_gc();
}
}
void
gc_init(void)
{
page_index_t i;
/* Compute the number of pages needed for the dynamic space.
* Dynamic space size should be aligned on page size. */
page_table_pages = dynamic_space_size/PAGE_BYTES;
gc_assert(dynamic_space_size == npage_bytes(page_table_pages));
page_table = calloc(page_table_pages, sizeof(struct page));
gc_assert(page_table);
gc_init_tables();
scavtab[WEAK_POINTER_WIDETAG] = scav_weak_pointer;
transother[SIMPLE_ARRAY_WIDETAG] = trans_boxed_large;
#ifdef LUTEX_WIDETAG
scavtab[LUTEX_WIDETAG] = scav_lutex;
transother[LUTEX_WIDETAG] = trans_lutex;
sizetab[LUTEX_WIDETAG] = size_lutex;
#endif
heap_base = (void*)DYNAMIC_SPACE_START;
/* Initialize each page structure. */
for (i = 0; i < page_table_pages; i++) {
/* Initialize all pages as free. */
page_table[i].allocated = FREE_PAGE_FLAG;
page_table[i].bytes_used = 0;
/* Pages are not write-protected at startup. */
page_table[i].write_protected = 0;
}
bytes_allocated = 0;
/* Initialize the generations.
*
* FIXME: very similar to code in gc_free_heap(), should be shared */
for (i = 0; i < NUM_GENERATIONS; i++) {
generations[i].alloc_start_page = 0;
generations[i].alloc_unboxed_start_page = 0;
generations[i].alloc_large_start_page = 0;
generations[i].alloc_large_unboxed_start_page = 0;
generations[i].bytes_allocated = 0;
generations[i].gc_trigger = 2000000;
generations[i].num_gc = 0;
generations[i].cum_sum_bytes_allocated = 0;
/* the tune-able parameters */
generations[i].bytes_consed_between_gc = 2000000;
generations[i].trigger_age = 1;
generations[i].min_av_mem_age = 0.75;
generations[i].lutexes = NULL;
}
/* Initialize gc_alloc. */
gc_alloc_generation = 0;
gc_set_region_empty(&boxed_region);
gc_set_region_empty(&unboxed_region);
last_free_page = 0;
}
/* Pick up the dynamic space from after a core load.
*
* The ALLOCATION_POINTER points to the end of the dynamic space.
*/
static void
gencgc_pickup_dynamic(void)
{
page_index_t page = 0;
void *alloc_ptr = (void *)get_alloc_pointer();
lispobj *prev=(lispobj *)page_address(page);
generation_index_t gen = PSEUDO_STATIC_GENERATION;
do {
lispobj *first,*ptr= (lispobj *)page_address(page);
page_table[page].allocated = BOXED_PAGE_FLAG;
page_table[page].gen = gen;
page_table[page].bytes_used = PAGE_BYTES;
page_table[page].large_object = 0;
page_table[page].write_protected = 0;
page_table[page].write_protected_cleared = 0;
page_table[page].dont_move = 0;
page_table[page].need_to_zero = 1;
if (!gencgc_partial_pickup) {
first=gc_search_space(prev,(ptr+2)-prev,ptr);
if(ptr == first) prev=ptr;
page_table[page].region_start_offset =
page_address(page) - (void *)prev;
}
page++;
} while (page_address(page) < alloc_ptr);
#ifdef LUTEX_WIDETAG
/* Lutexes have been registered in generation 0 by coreparse, and
* need to be moved to the right one manually.
*/
move_lutexes(0, PSEUDO_STATIC_GENERATION);
#endif
last_free_page = page;
generations[gen].bytes_allocated = npage_bytes(page);
bytes_allocated = npage_bytes(page);
gc_alloc_update_all_page_tables();
write_protect_generation_pages(gen);
}
void
gc_initialize_pointers(void)
{
gencgc_pickup_dynamic();
}
/* alloc(..) is the external interface for memory allocation. It
* allocates to generation 0. It is not called from within the garbage
* collector as it is only external uses that need the check for heap
* size (GC trigger) and to disable the interrupts (interrupts are
* always disabled during a GC).
*
* The vops that call alloc(..) assume that the returned space is zero-filled.
* (E.g. the most significant word of a 2-word bignum in MOVE-FROM-UNSIGNED.)
*
* The check for a GC trigger is only performed when the current
* region is full, so in most cases it's not needed. */
static inline lispobj *
general_alloc_internal(long nbytes, int page_type_flag, struct alloc_region *region,
struct thread *thread)
{
#ifndef LISP_FEATURE_WIN32
lispobj alloc_signal;
#endif
void *new_obj;
void *new_free_pointer;
gc_assert(nbytes>0);
/* Check for alignment allocation problems. */
gc_assert((((unsigned long)region->free_pointer & LOWTAG_MASK) == 0)
&& ((nbytes & LOWTAG_MASK) == 0));
/* Must be inside a PA section. */
gc_assert(get_pseudo_atomic_atomic(thread));
/* maybe we can do this quickly ... */
new_free_pointer = region->free_pointer + nbytes;
if (new_free_pointer <= region->end_addr) {
new_obj = (void*)(region->free_pointer);
region->free_pointer = new_free_pointer;
return(new_obj); /* yup */
}
/* we have to go the long way around, it seems. Check whether we
* should GC in the near future
*/
if (auto_gc_trigger && bytes_allocated > auto_gc_trigger) {
/* Don't flood the system with interrupts if the need to gc is
* already noted. This can happen for example when SUB-GC
* allocates or after a gc triggered in a WITHOUT-GCING. */
if (SymbolValue(GC_PENDING,thread) == NIL) {
/* set things up so that GC happens when we finish the PA
* section */
SetSymbolValue(GC_PENDING,T,thread);
if (SymbolValue(GC_INHIBIT,thread) == NIL)
set_pseudo_atomic_interrupted(thread);
}
}
new_obj = gc_alloc_with_region(nbytes, page_type_flag, region, 0);
#ifndef LISP_FEATURE_WIN32
alloc_signal = SymbolValue(ALLOC_SIGNAL,thread);
if ((alloc_signal & FIXNUM_TAG_MASK) == 0) {
if ((signed long) alloc_signal <= 0) {
SetSymbolValue(ALLOC_SIGNAL, T, thread);
thread_kill(thread->os_thread, SIGPROF);
} else {
SetSymbolValue(ALLOC_SIGNAL,
alloc_signal - (1 << N_FIXNUM_TAG_BITS),
thread);
}
}
#endif
return (new_obj);
}
lispobj *
general_alloc(long nbytes, int page_type_flag)
{
struct thread *thread = arch_os_get_current_thread();
/* Select correct region, and call general_alloc_internal with it.
* For other then boxed allocation we must lock first, since the
* region is shared. */
if (BOXED_PAGE_FLAG & page_type_flag) {
#ifdef LISP_FEATURE_SB_THREAD
struct alloc_region *region = (thread ? &(thread->alloc_region) : &boxed_region);
#else
struct alloc_region *region = &boxed_region;
#endif
return general_alloc_internal(nbytes, page_type_flag, region, thread);
} else if (UNBOXED_PAGE_FLAG == page_type_flag) {
lispobj * obj;
gc_assert(0 == thread_mutex_lock(&allocation_lock));
obj = general_alloc_internal(nbytes, page_type_flag, &unboxed_region, thread);
gc_assert(0 == thread_mutex_unlock(&allocation_lock));
return obj;
} else {
lose("bad page type flag: %d", page_type_flag);
}
}
lispobj *
alloc(long nbytes)
{
return general_alloc(nbytes, BOXED_PAGE_FLAG);
}
/*
* shared support for the OS-dependent signal handlers which
* catch GENCGC-related write-protect violations
*/
void unhandled_sigmemoryfault(void* addr);
/* Depending on which OS we're running under, different signals might
* be raised for a violation of write protection in the heap. This
* function factors out the common generational GC magic which needs
* to invoked in this case, and should be called from whatever signal
* handler is appropriate for the OS we're running under.
*
* Return true if this signal is a normal generational GC thing that
* we were able to handle, or false if it was abnormal and control
* should fall through to the general SIGSEGV/SIGBUS/whatever logic. */
int
gencgc_handle_wp_violation(void* fault_addr)
{
page_index_t page_index = find_page_index(fault_addr);
#ifdef QSHOW_SIGNALS
FSHOW((stderr, "heap WP violation? fault_addr=%x, page_index=%d\n",
fault_addr, page_index));
#endif
/* Check whether the fault is within the dynamic space. */
if (page_index == (-1)) {
/* It can be helpful to be able to put a breakpoint on this
* case to help diagnose low-level problems. */
unhandled_sigmemoryfault(fault_addr);
/* not within the dynamic space -- not our responsibility */
return 0;
} else {
if (page_table[page_index].write_protected) {
/* Unprotect the page. */
os_protect(page_address(page_index), PAGE_BYTES, OS_VM_PROT_ALL);
page_table[page_index].write_protected_cleared = 1;
page_table[page_index].write_protected = 0;
} else {
/* The only acceptable reason for this signal on a heap
* access is that GENCGC write-protected the page.
* However, if two CPUs hit a wp page near-simultaneously,
* we had better not have the second one lose here if it
* does this test after the first one has already set wp=0
*/
if(page_table[page_index].write_protected_cleared != 1)
lose("fault in heap page %d not marked as write-protected\nboxed_region.first_page: %d, boxed_region.last_page %d\n",
page_index, boxed_region.first_page,
boxed_region.last_page);
}
/* Don't worry, we can handle it. */
return 1;
}
}
/* This is to be called when we catch a SIGSEGV/SIGBUS, determine that
* it's not just a case of the program hitting the write barrier, and
* are about to let Lisp deal with it. It's basically just a
* convenient place to set a gdb breakpoint. */
void
unhandled_sigmemoryfault(void *addr)
{}
void gc_alloc_update_all_page_tables(void)
{
/* Flush the alloc regions updating the tables. */
struct thread *th;
for_each_thread(th)
gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &th->alloc_region);
gc_alloc_update_page_tables(UNBOXED_PAGE_FLAG, &unboxed_region);
gc_alloc_update_page_tables(BOXED_PAGE_FLAG, &boxed_region);
}
void
gc_set_region_empty(struct alloc_region *region)
{
region->first_page = 0;
region->last_page = -1;
region->start_addr = page_address(0);
region->free_pointer = page_address(0);
region->end_addr = page_address(0);
}
static void
zero_all_free_pages()
{
page_index_t i;
for (i = 0; i < last_free_page; i++) {
if (page_free_p(i)) {
#ifdef READ_PROTECT_FREE_PAGES
os_protect(page_address(i),
PAGE_BYTES,
OS_VM_PROT_ALL);
#endif
zero_pages(i, i);
}
}
}
/* Things to do before doing a final GC before saving a core (without
* purify).
*
* + Pages in large_object pages aren't moved by the GC, so we need to
* unset that flag from all pages.
* + The pseudo-static generation isn't normally collected, but it seems
* reasonable to collect it at least when saving a core. So move the
* pages to a normal generation.
*/
static void
prepare_for_final_gc ()
{
page_index_t i;
for (i = 0; i < last_free_page; i++) {
page_table[i].large_object = 0;
if (page_table[i].gen == PSEUDO_STATIC_GENERATION) {
int used = page_table[i].bytes_used;
page_table[i].gen = HIGHEST_NORMAL_GENERATION;
generations[PSEUDO_STATIC_GENERATION].bytes_allocated -= used;
generations[HIGHEST_NORMAL_GENERATION].bytes_allocated += used;
}
}
}
/* Do a non-conservative GC, and then save a core with the initial
* function being set to the value of the static symbol
* SB!VM:RESTART-LISP-FUNCTION */
void
gc_and_save(char *filename, boolean prepend_runtime,
boolean save_runtime_options)
{
FILE *file;
void *runtime_bytes = NULL;
size_t runtime_size;
file = prepare_to_save(filename, prepend_runtime, &runtime_bytes,
&runtime_size);
if (file == NULL)
return;
conservative_stack = 0;
/* The filename might come from Lisp, and be moved by the now
* non-conservative GC. */
filename = strdup(filename);
/* Collect twice: once into relatively high memory, and then back
* into low memory. This compacts the retained data into the lower
* pages, minimizing the size of the core file.
*/
prepare_for_final_gc();
gencgc_alloc_start_page = last_free_page;
collect_garbage(HIGHEST_NORMAL_GENERATION+1);
prepare_for_final_gc();
gencgc_alloc_start_page = -1;
collect_garbage(HIGHEST_NORMAL_GENERATION+1);
if (prepend_runtime)
save_runtime_to_filehandle(file, runtime_bytes, runtime_size);
/* The dumper doesn't know that pages need to be zeroed before use. */
zero_all_free_pages();
save_to_filehandle(file, filename, SymbolValue(RESTART_LISP_FUNCTION,0),
prepend_runtime, save_runtime_options);
/* Oops. Save still managed to fail. Since we've mangled the stack
* beyond hope, there's not much we can do.
* (beyond FUNCALLing RESTART_LISP_FUNCTION, but I suspect that's
* going to be rather unsatisfactory too... */
lose("Attempt to save core after non-conservative GC failed.\n");
}