[d1873c]: doc / sbcl.1 Maximize Restore History

Download this file

sbcl.1    445 lines (382 with data), 17.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
.\" -*- Mode: Text -*-
.\"
.\" man page introduction to SBCL
.\"
.\" SBCL, including this man page, is derived from CMU Common Lisp, of
.\" which it was said (ca. 1991)
.\" **********************************************************************
.\" This code was written as part of the CMU Common Lisp project at
.\" Carnegie Mellon University, and has been placed in the public domain.
.\" If you want to use this code or any part of CMU Common Lisp, please
.\" contact Scott Fahlman or slisp-group@cs.cmu.edu.
.\" **********************************************************************
.\" Most of SBCL, including this man page, is in the public domain. See
.\" COPYING in the distribution for more information.
.\"
.TH SBCL 1 "$Date$"
.AT 3
.SH NAME
SBCL -- Steel Bank Common Lisp
.SH DESCRIPTION
SBCL is an implementation of ANSI Common Lisp, featuring a
high-performance native compiler, native threads on several platforms,
a socket interface, a source-level debugger, a statistical profiler,
and much more.
It is free software, mostly in the public domain, but with some
subsystems under BSD-style licenses which allow modification and reuse
as long as credit is given. It is provided "as is", with no warranty
of any kind.
For more information about license issues, see the COPYING file in
the distribution. For more information about history, see the
CREDITS file in the distribution.
.SH RUNNING SBCL
To run SBCL, type "sbcl". After startup messages a prompt
("\f(CR*\fR") appears. Enter a Lisp expression, and SBCL will read and
execute it, print any values returned, give you another prompt, and
wait for your next input.
\f(C
$ sbcl
...[startup messages elided]...
* (+ 1 2 3)
6
* (quit)
\fR
Most people like to run SBCL as a subprocess under Emacs. The Emacs
"Slime" mode provides many convenient features, like command line
editing, tab completion, and various kinds of coupling between Common
Lisp source files and the interactive SBCL subprocess.
For information on creating "standalone executables" using SBCL, see
\f(CRSB\-EXT:SAVE\-LISP\-AND\-DIE\fR in the User Manual.
.SH COMMAND LINE SYNTAX
For ordinary interactive use, no command line arguments should be
necessary.
In order to understand the SBCL command line syntax, it is helpful to
understand that the system is composed of two parts: a runtime
environment, and the Common Lisp system it supports. Some command line
arguments are processed during the initialization of the runtime, and
some during the initialization of the Lisp system -- any remaining
command line arguments are passed on to user code.
The overall command line syntax is:
.TP 3
.B sbcl [runtime options] \-\-end\-runtime\-options [toplevel options] \-\-end\-toplevel\-options [user options]
.PP
Both \-\-end\-runtime\-options and \-\-end\-toplevel\-options are
optional, and may be omitted. They are intended for use in situations
where any command line options are under user control (eg. in batch
files): by using them you can prevent options intended for your
program being accidentally processed by SBCL.
Supported runtime options are
.TP 3
.B \-\-core <corefilename>
Use the specified Lisp core file instead of the default. (See the FILES
section for the standard core, or the system documentation for
\f(CRSB\-EXT:SAVE\-LISP\-AND\-DIE\fR for information about how to create a
custom core.) Note that if the Lisp core file is a user-created core
file, it may run a nonstandard toplevel which does not recognize the
standard toplevel options.
.TP 3
.B \-\-dynamic-space-size <megabytes>
Size of the dynamic space reserved on startup in megabytes. Default value
is platform dependent.
.TP 3
.B \-\-control-stack-size <megabytes>
Size of control stack reserved for each thread in megabytes. Default value
is 2.
.TP 3
.B \-\-noinform
Suppress the printing of any banner or other informational message at
startup. (This makes it easier to write Lisp programs which work
cleanly in Unix pipelines. See also the "\-\-noprint" and
"\-\-disable\-debugger" options.)
.TP 3
.B \-\-disable\-ldb
Disable the low-level debugger. Only effective if SBCL is compiled with LDB.
.TP 3
.B \-\-lose\-on\-corruption
There are some dangerous low level errors (for instance, control stack
exhausted, memory fault) that (or whose handlers) can corrupt the
image. By default SBCL prints a warning, then tries to continue and
handle the error in Lisp, but this will not always work and SBCL may
malfunction or even hang. With this option, upon encountering such an
error SBCL will invoke ldb (if present and enabled) or else exit.
.TP 3
.B \-\-script <filename>
As a runtime option equivalent to \-\-noinform \-\-disable\-ldb
\-\-lose\-on\-corruption \-\-end\-toplevel\-options \-\-script
<filename>. See the description of \-\-script as a toplevel option
below.
.TP 3
.B \-\-help
Print some basic information about SBCL, then exit.
.TP 3
.B \-\-version
Print SBCL's version information, then exit.
.PP
In the future, runtime options may be added to control behavior such
as lazy allocation of memory.
Runtime options, including any \-\-end\-runtime\-options option,
are stripped out of the command line before the
Lisp toplevel logic gets a chance to see it.
The toplevel options supported by the standard SBCL core are
.TP 3
.B \-\-sysinit <filename>
Load filename instead of the default system-wide initialization file.
(See the FILES section.)
.TP 3
.B \-\-no\-sysinit
Do not load a system-wide initialization file. If this option is
given, the \-\-sysinit option is ignored.
.TP 3
.B \-\-userinit <filename>
Load filename instead of the default user initialization file. (See
the FILES section.)
.TP 3
.B \-\-no\-userinit
Do not load a user initialization file. If this option is
given, the \-\-userinit option is ignored.
.TP 3
.B \-\-eval <command>
After executing any initialization file, but before starting the
read-eval-print loop on standard input, read and evaluate the command
given. More than one \-\-eval option can be used, and all will be read
and executed, in the order they appear on the command line.
.TP 3
.B \-\-load <filename>
This is equivalent to \-\-eval \(aq(load "<filename>")\(aq. The special
syntax is intended to reduce quoting headaches when invoking SBCL
from shell scripts.
.TP 3
.B \-\-noprint
When ordinarily the toplevel "read-eval-print loop" would be executed,
execute a "read-eval loop" instead, \fIi.e.\fR don't print a prompt and
don't echo results. Combined with the \-\-noinform runtime option, this
makes it easier to write Lisp "scripts" which work cleanly in Unix
pipelines.
.TP 3
.B \-\-disable\-debugger
By default when SBCL encounters an error, it enters the builtin
debugger, allowing interactive diagnosis and possible intercession.
This option disables the debugger, causing errors to print a backtrace
and exit with status 1 instead -- which is a mode of operation better suited
for batch processing. See the User Manual on \f(CRSB\-EXT:DISABLE\-DEBUGGER\fR for details.
.TP 3
.B \-\-script <filename>
Implies \-\-no-sysinit \-\-no-userinit \-\-disable-debugger
\-\-end\-toplevel\-options.
Causes the system to load the specified file and exit immediately
afterwards, instead of entering the readl-eval-print loop. If the file
begins with a shebang line, it is ignored.
.PP
Regardless of the order in which toplevel options appear on the command
line, the order of actions is:
.nr step 1 1
.IP \n[step]. 3
Debugger is disabled, if requested.
.IP \n+[step].
Any system initialization file is loaded, unless prohibited.
.IP \n+[step].
Any user initialization file is loaded, unless prohibited.
.IP \n+[step].
\-\-eval and \-\-load options are processed in the order given.
.PP
Finally, either the read-eval-print loop is entered or the file
specified with \-\-script option is loaded.
When running in the read-eval-print loop the system exits on end of
file. Similarly, the system exits immediately after processing the
file specified with \-\-script.
Note that when running SBCL with the \-\-core option, using a core
file created by a user call to the
\f(CRSB\-EXT:SAVE\-LISP\-AND\-DIE\fR, the toplevel options may be
under the control of user code passed as arguments to
\f(CRSB\-EXT:SAVE\-LISP\-AND\-DIE\fR. For this purpose, the
\-\-end\-toplevel\-options option itself can be considered a toplevel
option, \fIi.e.\fR the user core, at its option, may not support it.
In the standard SBCL startup sequence (\fIi.e.\fR with no user core
involved) toplevel options and any \-\-end\-toplevel\-options option are
stripped out of the command line argument list before user code gets a
chance to see it.
.SH OVERVIEW
SBCL is derived from the CMU CL. (The name is intended to acknowledge
the connection: steel and banking are the industries where Carnegie
and Mellon made the big bucks.)
SBCL compiles by default: even functions entered in the
read-eval-print loop are compiled to native code, unless the evaluator
has been explicitly turned on. (Even today, some 30 years after the
MacLisp compiler, people will tell you that Lisp is an interpreted
language. Ignore them.)
SBCL aims for but has not completely achieved compliance with the ANSI
standard for Common Lisp. More information about this is available in
the BUGS section below.
SBCL also includes various non-ANSI extensions, described more fully
in the User Manual. Some of these are in the base system and others
are "contrib" modules loaded on request using \f(CRREQUIRE\fR. For
example, to load the \f(CRSB\-BSD\-SOCKETS\fR module that provides
TCP/IP connectivity,
\f(CR
* (require \(aqasdf)
* (require \(aqsb\-bsd\-sockets)
\fR
For more information, see the User Manual.
.PP
.SH THE COMPILER
SBCL inherits from CMU CL the "Python" native code compiler. (Though
we often avoid that name in order to avoid confusion with the
scripting language also called Python.) This compiler is very clever
about understanding the type system of Common Lisp and using it to
optimize code, and about producing notes to let the user know when the
compiler doesn't have enough type information to produce efficient
code. It also tries (almost always successfully) to follow the unusual
but very useful principle that "declarations are assertions", \fIi.e.\fR
type declarations should be checked at runtime unless the user
explicitly tells the system that speed is more important than safety.
The compiled code uses garbage collection to automatically manage
memory. The garbage collector implementation varies considerably from
CPU to CPU. In particular, on some CPUs the GC is nearly exact, while
on others it's more conservative, and on some CPUs the GC is
generational, while on others simpler stop and copy strategies are
used.
For more information about the compiler, see the user manual.
.SH SYSTEM REQUIREMENTS
SBCL currently runs on X86 (Linux, FreeBSD, OpenBSD, and NetBSD),
X86-64 (Linux), Alpha (Linux, Tru64), PPC (Linux, Darwin/MacOS X),
SPARC (Linux and Solaris 2.x), and MIPS (Linux). For information on
other ongoing and possible ports, see the sbcl\-devel mailing list,
and/or the web site.
SBCL requires on the order of 16Mb RAM to run on X86 systems, though
all but the smallest programs would be happier with 32Mb or more.
.SH KNOWN BUGS
This section attempts to list the most serious and long-standing bugs.
For more detailed and current information on bugs, see the BUGS file
in the distribution.
It is possible to get in deep trouble by exhausting heap memory. The
SBCL system overcommits memory at startup, so, on typical Unix-alikes
like Linux and FreeBSD, this means that if the SBCL system turns out
to use more virtual memory than the system has available for it, other
processes tend to be killed randomly (!).
The compiler's handling of function return values unnecessarily
violates the "declarations are assertions" principle that it otherwise
adheres to. Using \f(CRPROCLAIM\fR or \f(CRDECLAIM\fR to specify the
return type of a function causes the compiler to believe you without
checking. Thus compiling a file containing
\f(CR
(DECLAIM (FTYPE (FUNCTION (T) NULL) SOMETIMES))
(DEFUN SOMETIMES (X) (ODDP X))
(DEFUN FOO (X) (IF (SOMETIMES X) \(aqTHIS\-TIME \(aqNOT\-THIS\-TIME))\fR
.br
then running \f(CR(FOO 1)\fR gives \f(CRNOT\-THIS\-TIME\fR, because
the compiler relied on the truth of the \f(CRDECLAIM\fR without checking it.
Some things are implemented very inefficiently.
.TP 3
\--
Multidimensional arrays are inefficient, especially
multidimensional arrays of floating point numbers.
.TP 3
\--
SBCL, like most (maybe all?) implementations of Common Lisp on stock
hardware, has trouble passing floating point numbers around
efficiently, because a floating point number, plus a few extra bits to
identify its type, is larger than a machine word. (Thus, they get
"boxed" in heap-allocated storage, causing GC overhead.) Within a
single compilation unit, or when doing built-in operations like
\f(CRSQRT\fR and \f(CRAREF\fR, or some special operations like
structure slot accesses, this is avoidable: see the user manual for
some efficiency hints. But for general function calls across the
boundaries of compilation units, passing the result of a floating
point calculation as a function argument (or returning a floating
point result as a function value) is a fundamentally slow operation.
.PP
.SH REPORTING BUGS
To report a bug, please send mail to the mailing lists sbcl-help or
sbcl-devel. You can find the complete mailing list addresses on the
web pages at <\f(CRhttp://sbcl.sourceforge.net/\fR>; note that as a
spam reduction measure you must subscribe to the lists before you can
post. (You may also find fancy SourceForge bug-tracking machinery
there, but don't be fooled. As of 2002-07-25 anyway, we don't actively
monitor that machinery, and it exists only because we haven't been
able to figure out how to turn it off.)
As with any software bug report, it's most helpful if you can provide
enough information to reproduce the symptoms reliably, and if you say
clearly what the symptoms are. For example, "There seems to be
something wrong with TAN of very small negative arguments. When I
execute \f(CR(TAN LEAST\-NEGATIVE\-SINGLE\-FLOAT)\fR interactively on
sbcl-1.2.3 on my Linux 4.5 X86 box, I get an \f(CRUNBOUND\-VARIABLE\fR
error."
.SH DIFFERENCES FROM CMU CL
SBCL can be built from scratch using a plain vanilla ANSI Common Lisp
system and a C compiler, and all of its properties are specified by
the version of the source code that it was created from. This clean
bootstrappability was the immediate motivation for forking off of the
CMU CL development tree. A variety of implementation differences are
motivated by this design goal.
Maintenance work in SBCL since the fork has diverged somewhat from the
maintenance work in CMU CL. Many but not all bug fixes and
improvements have been shared between the two projects, and sometimes
the two projects disagree about what would be an improvement.
Most extensions supported by CMU CL have been unbundled from SBCL,
including Motif support, the Hemlock editor, search paths, the WIRE
protocol, various user-level macros and functions (\fIe.g.\fR
\f(CRLETF\fR, \f(CRITERATE\fR, \f(CRMEMQ\fR, \f(CRREQUIRED\-ARGUMENT\fR),
and many others.
(Why doesn't SBCL support more extensions natively? Why drop all those
nice extensions from CMU CL when the code already exists? This is a
frequently asked question on the mailing list. There are two principal
reasons. First, it's a design philosophy issue: arguably SBCL has done
its job by supplying a stable FFI, and the right design decision is to
move functionality derived from that, like socket support, into
separate libraries. Some of these are distributed with SBCL as
"contrib" modules, others are distributed as separate software
packages by separate maintainers. Second, it's a practical decision -
focusing on a smaller number of things will, we hope, let us do a
better job on them.)
.SH SUPPORT
Various information about SBCL is available at
<\f(CRhttp://www.sbcl.org/\fR>. The mailing lists there are the recommended
place to look for support.
.SH AUTHORS
Dozens of people have made substantial contributions to SBCL and its
subsystems, and to the CMU CL system on which it was based, over the
years. See the CREDITS file in the distribution for more information.
.SH ENVIRONMENT
.TP 10n
.BR SBCL_HOME
This variable controls where files like "sbclrc", "sbcl.core", and the
add-on "contrib" systems are searched for. If it is not set, then
sbcl sets it from a compile-time default location which is usually
/usr/local/lib/sbcl/ but may have been changed \fIe.g.\fR by a third-party
packager.
.SH FILES
.TP
.I sbcl
executable program containing some low-level runtime support and
a loader, used to read sbcl.core
.TP
.I sbcl.core
dumped memory image containing most of SBCL, to be loaded by
the `sbcl' executable. Looked for in $\f(CRSBCL_HOME\fR,
unless overridden by the \f(CR\-\-core\fR option.
.TP
.I sbclrc
optional system-wide startup script, looked for in $\f(CRSBCL_HOME\fR/sbclrc
then /etc/sbclrc, unless overridden by the \f(CR\-\-sysinit\fR command line
option.
.TP
.I .sbclrc
optional per-user customizable startup script (in user's home
directory, or as specified by \f(CR\-\-userinit\fR)
.SH SEE ALSO
Full SBCL documentation is maintained as a Texinfo manual. If is has
been installed, the command
.IP
.B info sbcl
.PP
should give you access to the complete manual. Depending on your
installation it may also be available in HTML and PDF formats in eg.
.IP
.B /usr/local/share/doc/sbcl/
.PP
See the SBCL homepage
.IP
.B <\f(CRhttp://www.sbcl.org/\fR>
.PP
for more information, including directions on how to subscribe to the
sbcl\-devel and sbcl\-help mailing-lists.