[cabec2]: src / compiler / macros.lisp Maximize Restore History

Download this file

macros.lisp    937 lines (871 with data), 37.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
;;;; miscellaneous types and macros used in writing the compiler
;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; This software is derived from the CMU CL system, which was
;;;; written at Carnegie Mellon University and released into the
;;;; public domain. The software is in the public domain and is
;;;; provided with absolutely no warranty. See the COPYING and CREDITS
;;;; files for more information.
(in-package "SB!C")
(declaim (special *wild-type* *universal-type* *compiler-error-context*))
;;; An INLINEP value describes how a function is called. The values
;;; have these meanings:
;;; NIL No declaration seen: do whatever you feel like, but don't
;;; dump an inline expansion.
;;; :NOTINLINE NOTINLINE declaration seen: always do full function call.
;;; :INLINE INLINE declaration seen: save expansion, expanding to it
;;; if policy favors.
;;; :MAYBE-INLINE
;;; Retain expansion, but only use it opportunistically.
(deftype inlinep () '(member :inline :maybe-inline :notinline nil))
;;;; source-hacking defining forms
;;; to be passed to PARSE-DEFMACRO when we want compiler errors
;;; instead of real errors
#!-sb-fluid (declaim (inline convert-condition-into-compiler-error))
(defun convert-condition-into-compiler-error (datum &rest stuff)
(if (stringp datum)
(apply #'compiler-error datum stuff)
(compiler-error "~A"
(if (symbolp datum)
(apply #'make-condition datum stuff)
datum))))
;;; Parse a DEFMACRO-style lambda-list, setting things up so that a
;;; compiler error happens if the syntax is invalid.
;;;
;;; Define a function that converts a special form or other magical
;;; thing into IR1. LAMBDA-LIST is a defmacro style lambda list.
;;; START-VAR and CONT-VAR are bound to the start and result
;;; continuations for the resulting IR1. KIND is the function kind to
;;; associate with NAME.
(defmacro def-ir1-translator (name (lambda-list start-var cont-var
&key (kind :special-form))
&body body)
(let ((fn-name (symbolicate "IR1-CONVERT-" name))
(n-form (gensym))
(n-env (gensym)))
(multiple-value-bind (body decls doc)
(parse-defmacro lambda-list n-form body name "special form"
:environment n-env
:error-fun 'convert-condition-into-compiler-error)
`(progn
(declaim (ftype (function (continuation continuation t) (values))
,fn-name))
(defun ,fn-name (,start-var ,cont-var ,n-form)
(let ((,n-env *lexenv*))
,@decls
,body
(values)))
,@(when doc
`((setf (fdocumentation ',name 'function) ,doc)))
;; FIXME: Evidently "there can only be one!" -- we overwrite any
;; other :IR1-CONVERT value. This deserves a warning, I think.
(setf (info :function :ir1-convert ',name) #',fn-name)
(setf (info :function :kind ',name) ,kind)
;; It's nice to do this for error checking in the target
;; SBCL, but it's not nice to do this when we're running in
;; the cross-compilation host Lisp, which owns the
;; SYMBOL-FUNCTION of its COMMON-LISP symbols.
#-sb-xc-host
,@(when (eq kind :special-form)
`((setf (symbol-function ',name)
(lambda (&rest rest)
(declare (ignore rest))
(error 'special-form-function
:name ',name)))))))))
;;; (This is similar to DEF-IR1-TRANSLATOR, except that we pass if the
;;; syntax is invalid.)
;;;
;;; Define a macro-like source-to-source transformation for the
;;; function NAME. A source transform may "pass" by returning a
;;; non-nil second value. If the transform passes, then the form is
;;; converted as a normal function call. If the supplied arguments are
;;; not compatible with the specified LAMBDA-LIST, then the transform
;;; automatically passes.
;;;
;;; Source transforms may only be defined for functions. Source
;;; transformation is not attempted if the function is declared
;;; NOTINLINE. Source transforms should not examine their arguments.
;;; If it matters how the function is used, then DEFTRANSFORM should
;;; be used to define an IR1 transformation.
;;;
;;; If the desirability of the transformation depends on the current
;;; OPTIMIZE parameters, then the POLICY macro should be used to
;;; determine when to pass.
(defmacro define-source-transform (name lambda-list &body body)
(let ((fn-name
(if (listp name)
(collect ((pieces))
(dolist (piece name)
(pieces "-")
(pieces piece))
(apply #'symbolicate "SOURCE-TRANSFORM" (pieces)))
(symbolicate "SOURCE-TRANSFORM-" name)))
(n-form (gensym))
(n-env (gensym)))
(multiple-value-bind (body decls)
(parse-defmacro lambda-list n-form body name "form"
:environment n-env
:error-fun `(lambda (&rest stuff)
(declare (ignore stuff))
(return-from ,fn-name
(values nil t))))
`(progn
(defun ,fn-name (,n-form)
(let ((,n-env *lexenv*))
,@decls
,body))
(setf (info :function :source-transform ',name) #',fn-name)))))
;;;; boolean attribute utilities
;;;;
;;;; We need to maintain various sets of boolean attributes for known
;;;; functions and VOPs. To save space and allow for quick set
;;;; operations, we represent the attributes as bits in a fixnum.
(deftype attributes () 'fixnum)
(eval-when (:compile-toplevel :load-toplevel :execute)
;;; Given a list of attribute names and an alist that translates them
;;; to masks, return the OR of the masks.
(defun compute-attribute-mask (names alist)
(collect ((res 0 logior))
(dolist (name names)
(let ((mask (cdr (assoc name alist))))
(unless mask
(error "unknown attribute name: ~S" name))
(res mask)))
(res)))
) ; EVAL-WHEN
;;; Define a new class of boolean attributes, with the attributes
;;; having the specified ATTRIBUTE-NAMES. NAME is the name of the
;;; class, which is used to generate some macros to manipulate sets of
;;; the attributes:
;;;
;;; NAME-attributep attributes attribute-name*
;;; Return true if one of the named attributes is present, false
;;; otherwise. When set with SETF, updates the place Attributes
;;; setting or clearing the specified attributes.
;;;
;;; NAME-attributes attribute-name*
;;; Return a set of the named attributes.
#-sb-xc
(progn
(def!macro !def-boolean-attribute (name &rest attribute-names)
(let ((translations-name (symbolicate "*" name "-ATTRIBUTE-TRANSLATIONS*"))
(test-name (symbolicate name "-ATTRIBUTEP")))
(collect ((alist))
(do ((mask 1 (ash mask 1))
(names attribute-names (cdr names)))
((null names))
(alist (cons (car names) mask)))
`(progn
(eval-when (:compile-toplevel :load-toplevel :execute)
(defparameter ,translations-name ',(alist)))
(defmacro ,(symbolicate name "-ATTRIBUTES") (&rest attribute-names)
"Automagically generated boolean attribute creation function.
See !DEF-BOOLEAN-ATTRIBUTE."
(compute-attribute-mask attribute-names ,translations-name))
(defmacro ,test-name (attributes &rest attribute-names)
"Automagically generated boolean attribute test function.
See !DEF-BOOLEAN-ATTRIBUTE."
`(logtest ,(compute-attribute-mask attribute-names
,translations-name)
(the attributes ,attributes)))
;; This definition transforms strangely under UNCROSS, in a
;; way that DEF!MACRO doesn't understand, so we delegate it
;; to a submacro then define the submacro differently when
;; building the xc and when building the target compiler.
(!def-boolean-attribute-setter ,test-name
,translations-name
,@attribute-names)))))
;; It seems to be difficult to express in DEF!MACRO machinery what
;; to do with target-vs-host GET-SETF-EXPANSION in here, so we just
;; hack it by hand, passing a different GET-SETF-EXPANSION-FUN-NAME
;; in the host DEFMACRO and target DEFMACRO-MUNDANELY cases.
(defun guts-of-!def-boolean-attribute-setter (test-name
translations-name
attribute-names
get-setf-expansion-fun-name)
`(define-setf-expander ,test-name (place &rest attributes
&environment env)
"Automagically generated boolean attribute setter. See
!DEF-BOOLEAN-ATTRIBUTE."
#-sb-xc-host (declare (type sb!c::lexenv env))
;; FIXME: It would be better if &ENVIRONMENT arguments were
;; automatically declared to have type LEXENV by the
;; hairy-argument-handling code.
(multiple-value-bind (temps values stores set get)
(,get-setf-expansion-fun-name place env)
(when (cdr stores)
(error "multiple store variables for ~S" place))
(let ((newval (gensym))
(n-place (gensym))
(mask (compute-attribute-mask attributes ,translations-name)))
(values `(,@temps ,n-place)
`(,@values ,get)
`(,newval)
`(let ((,(first stores)
(if ,newval
(logior ,n-place ,mask)
(logand ,n-place ,(lognot mask)))))
,set
,newval)
`(,',test-name ,n-place ,@attributes))))))
;; We define the host version here, and the just-like-it-but-different
;; target version later, after DEFMACRO-MUNDANELY has been defined.
(defmacro !def-boolean-attribute-setter (test-name
translations-name
&rest attribute-names)
(guts-of-!def-boolean-attribute-setter test-name
translations-name
attribute-names
'get-setf-expansion)))
;;; And now for some gratuitous pseudo-abstraction...
;;;
;;; ATTRIBUTES-UNION
;;; Return the union of all the sets of boolean attributes which are its
;;; arguments.
;;; ATTRIBUTES-INTERSECTION
;;; Return the intersection of all the sets of boolean attributes which
;;; are its arguments.
;;; ATTRIBUTES
;;; True if the attributes present in ATTR1 are identical to
;;; those in ATTR2.
(defmacro attributes-union (&rest attributes)
`(the attributes
(logior ,@(mapcar (lambda (x) `(the attributes ,x)) attributes))))
(defmacro attributes-intersection (&rest attributes)
`(the attributes
(logand ,@(mapcar (lambda (x) `(the attributes ,x)) attributes))))
(declaim (ftype (function (attributes attributes) boolean) attributes=))
#!-sb-fluid (declaim (inline attributes=))
(defun attributes= (attr1 attr2)
(eql attr1 attr2))
;;;; lambda-list parsing utilities
;;;;
;;;; IR1 transforms, optimizers and type inferencers need to be able
;;;; to parse the IR1 representation of a function call using a
;;;; standard function lambda-list.
(eval-when (:compile-toplevel :load-toplevel :execute)
;;; Given a DEFTRANSFORM-style lambda-list, generate code that parses
;;; the arguments of a combination with respect to that lambda-list.
;;; BODY is the the list of forms which are to be evaluated within the
;;; bindings. ARGS is the variable that holds list of argument
;;; continuations. ERROR-FORM is a form which is evaluated when the
;;; syntax of the supplied arguments is incorrect or a non-constant
;;; argument keyword is supplied. Defaults and other gunk are ignored.
;;; The second value is a list of all the arguments bound. We make the
;;; variables IGNORABLE so that we don't have to manually declare them
;;; Ignore if their only purpose is to make the syntax work.
(defun parse-deftransform (lambda-list body args error-form)
(multiple-value-bind (req opt restp rest keyp keys allowp)
(parse-lambda-list lambda-list)
(let* ((min-args (length req))
(max-args (+ min-args (length opt)))
(n-keys (gensym)))
(collect ((binds)
(vars)
(pos 0 +)
(keywords))
(dolist (arg req)
(vars arg)
(binds `(,arg (nth ,(pos) ,args)))
(pos 1))
(dolist (arg opt)
(let ((var (if (atom arg) arg (first arg))))
(vars var)
(binds `(,var (nth ,(pos) ,args)))
(pos 1)))
(when restp
(vars rest)
(binds `(,rest (nthcdr ,(pos) ,args))))
(dolist (spec keys)
(if (or (atom spec) (atom (first spec)))
(let* ((var (if (atom spec) spec (first spec)))
(key (keywordicate var)))
(vars var)
(binds `(,var (find-keyword-continuation ,n-keys ,key)))
(keywords key))
(let* ((head (first spec))
(var (second head))
(key (first head)))
(vars var)
(binds `(,var (find-keyword-continuation ,n-keys ,key)))
(keywords key))))
(let ((n-length (gensym))
(limited-legal (not (or restp keyp))))
(values
`(let ((,n-length (length ,args))
,@(when keyp `((,n-keys (nthcdr ,(pos) ,args)))))
(unless (and
;; FIXME: should be PROPER-LIST-OF-LENGTH-P
,(if limited-legal
`(<= ,min-args ,n-length ,max-args)
`(<= ,min-args ,n-length))
,@(when keyp
(if allowp
`((check-key-args-constant ,n-keys))
`((check-transform-keys ,n-keys ',(keywords))))))
,error-form)
(let ,(binds)
(declare (ignorable ,@(vars)))
,@body))
(vars)))))))
) ; EVAL-WHEN
;;;; DEFTRANSFORM
;;; Define an IR1 transformation for NAME. An IR1 transformation
;;; computes a lambda that replaces the function variable reference
;;; for the call. A transform may pass (decide not to transform the
;;; call) by calling the GIVE-UP-IR1-TRANSFORM function. LAMBDA-LIST
;;; both determines how the current call is parsed and specifies the
;;; LAMBDA-LIST for the resulting lambda.
;;;
;;; We parse the call and bind each of the lambda-list variables to
;;; the continuation which represents the value of the argument. When
;;; parsing the call, we ignore the defaults, and always bind the
;;; variables for unsupplied arguments to NIL. If a required argument
;;; is missing, an unknown keyword is supplied, or an argument keyword
;;; is not a constant, then the transform automatically passes. The
;;; DECLARATIONS apply to the bindings made by DEFTRANSFORM at
;;; transformation time, rather than to the variables of the resulting
;;; lambda. Bound-but-not-referenced warnings are suppressed for the
;;; lambda-list variables. The DOC-STRING is used when printing
;;; efficiency notes about the defined transform.
;;;
;;; Normally, the body evaluates to a form which becomes the body of
;;; an automatically constructed lambda. We make LAMBDA-LIST the
;;; lambda-list for the lambda, and automatically insert declarations
;;; of the argument and result types. If the second value of the body
;;; is non-null, then it is a list of declarations which are to be
;;; inserted at the head of the lambda. Automatic lambda generation
;;; may be inhibited by explicitly returning a lambda from the body.
;;;
;;; The ARG-TYPES and RESULT-TYPE are used to create a function type
;;; which the call must satisfy before transformation is attempted.
;;; The function type specifier is constructed by wrapping (FUNCTION
;;; ...) around these values, so the lack of a restriction may be
;;; specified by omitting the argument or supplying *. The argument
;;; syntax specified in the ARG-TYPES need not be the same as that in
;;; the LAMBDA-LIST, but the transform will never happen if the
;;; syntaxes can't be satisfied simultaneously. If there is an
;;; existing transform for the same function that has the same type,
;;; then it is replaced with the new definition.
;;;
;;; These are the legal keyword options:
;;; :RESULT - A variable which is bound to the result continuation.
;;; :NODE - A variable which is bound to the combination node for the call.
;;; :POLICY - A form which is supplied to the POLICY macro to determine
;;; whether this transformation is appropriate. If the result
;;; is false, then the transform automatically gives up.
;;; :EVAL-NAME
;;; - The name and argument/result types are actually forms to be
;;; evaluated. Useful for getting closures that transform similar
;;; functions.
;;; :DEFUN-ONLY
;;; - Don't actually instantiate a transform, instead just DEFUN
;;; Name with the specified transform definition function. This
;;; may be later instantiated with %DEFTRANSFORM.
;;; :IMPORTANT
;;; - If supplied and non-NIL, note this transform as ``important,''
;;; which means efficiency notes will be generated when this
;;; transform fails even if INHIBIT-WARNINGS=SPEED (but not if
;;; INHIBIT-WARNINGS>SPEED).
(defmacro deftransform (name (lambda-list &optional (arg-types '*)
(result-type '*)
&key result policy node defun-only
eval-name important)
&body body-decls-doc)
(when (and eval-name defun-only)
(error "can't specify both DEFUN-ONLY and EVAL-NAME"))
(multiple-value-bind (body decls doc) (parse-body body-decls-doc)
(let ((n-args (gensym))
(n-node (or node (gensym)))
(n-decls (gensym))
(n-lambda (gensym))
(decls-body `(,@decls ,@body)))
(multiple-value-bind (parsed-form vars)
(parse-deftransform lambda-list
(if policy
`((unless (policy ,n-node ,policy)
(give-up-ir1-transform))
,@decls-body)
body)
n-args
'(give-up-ir1-transform))
(let ((stuff
`((,n-node)
(let* ((,n-args (basic-combination-args ,n-node))
,@(when result
`((,result (node-cont ,n-node)))))
(multiple-value-bind (,n-lambda ,n-decls)
,parsed-form
(if (and (consp ,n-lambda) (eq (car ,n-lambda) 'lambda))
,n-lambda
`(lambda ,',lambda-list
(declare (ignorable ,@',vars))
,@,n-decls
,,n-lambda)))))))
(if defun-only
`(defun ,name ,@(when doc `(,doc)) ,@stuff)
`(%deftransform
,(if eval-name name `',name)
,(if eval-name
``(function ,,arg-types ,,result-type)
`'(function ,arg-types ,result-type))
(lambda ,@stuff)
,doc
,(if important t nil))))))))
;;;; DEFKNOWN and DEFOPTIMIZER
;;; This macro should be the way that all implementation independent
;;; information about functions is made known to the compiler.
;;;
;;; FIXME: The comment above suggests that perhaps some of my added
;;; FTYPE declarations are in poor taste. Should I change my
;;; declarations, or change the comment, or what?
;;;
;;; FIXME: DEFKNOWN is needed only at build-the-system time. Figure
;;; out some way to keep it from appearing in the target system.
;;;
;;; Declare the function NAME to be a known function. We construct a
;;; type specifier for the function by wrapping (FUNCTION ...) around
;;; the ARG-TYPES and RESULT-TYPE. ATTRIBUTES is an unevaluated list
;;; of boolean attributes of the function. See their description in
;;; (!DEF-BOOLEAN-ATTRIBUTE IR1). NAME may also be a list of names, in
;;; which case the same information is given to all the names. The
;;; keywords specify the initial values for various optimizers that
;;; the function might have.
(defmacro defknown (name arg-types result-type &optional (attributes '(any))
&rest keys)
(when (and (intersection attributes '(any call unwind))
(intersection attributes '(movable)))
(error "function cannot have both good and bad attributes: ~S" attributes))
(when (member 'any attributes)
(setq attributes (union '(call unsafe unwind) attributes)))
(when (member 'flushable attributes)
(pushnew 'unsafely-flushable attributes))
`(%defknown ',(if (and (consp name)
(not (legal-fun-name-p name)))
name
(list name))
'(sfunction ,arg-types ,result-type)
(ir1-attributes ,@attributes)
,@keys))
;;; Create a function which parses combination args according to WHAT
;;; and LAMBDA-LIST, where WHAT is either a function name or a list
;;; (FUN-NAME KIND) and does some KIND of optimization.
;;;
;;; The FUN-NAME must name a known function. LAMBDA-LIST is used
;;; to parse the arguments to the combination as in DEFTRANSFORM. If
;;; the argument syntax is invalid or there are non-constant keys,
;;; then we simply return NIL.
;;;
;;; The function is DEFUN'ed as FUNCTION-KIND-OPTIMIZER. Possible
;;; kinds are DERIVE-TYPE, OPTIMIZER, LTN-ANNOTATE and IR2-CONVERT. If
;;; a symbol is specified instead of a (FUNCTION KIND) list, then we
;;; just do a DEFUN with the symbol as its name, and don't do anything
;;; with the definition. This is useful for creating optimizers to be
;;; passed by name to DEFKNOWN.
;;;
;;; If supplied, NODE-VAR is bound to the combination node being
;;; optimized. If additional VARS are supplied, then they are used as
;;; the rest of the optimizer function's lambda-list. LTN-ANNOTATE
;;; methods are passed an additional POLICY argument, and IR2-CONVERT
;;; methods are passed an additional IR2-BLOCK argument.
(defmacro defoptimizer (what (lambda-list &optional (n-node (gensym))
&rest vars)
&body body)
(let ((name (if (symbolp what) what
(symbolicate (first what) "-" (second what) "-OPTIMIZER"))))
(let ((n-args (gensym)))
`(progn
(defun ,name (,n-node ,@vars)
(let ((,n-args (basic-combination-args ,n-node)))
,(parse-deftransform lambda-list body n-args
`(return-from ,name nil))))
,@(when (consp what)
`((setf (,(symbolicate "FUN-INFO-" (second what))
(fun-info-or-lose ',(first what)))
#',name)))))))
;;;; IR groveling macros
;;; Iterate over the blocks in a component, binding BLOCK-VAR to each
;;; block in turn. The value of ENDS determines whether to iterate
;;; over dummy head and tail blocks:
;;; NIL -- Skip Head and Tail (the default)
;;; :HEAD -- Do head but skip tail
;;; :TAIL -- Do tail but skip head
;;; :BOTH -- Do both head and tail
;;;
;;; If supplied, RESULT-FORM is the value to return.
(defmacro do-blocks ((block-var component &optional ends result) &body body)
(unless (member ends '(nil :head :tail :both))
(error "losing ENDS value: ~S" ends))
(let ((n-component (gensym))
(n-tail (gensym)))
`(let* ((,n-component ,component)
(,n-tail ,(if (member ends '(:both :tail))
nil
`(component-tail ,n-component))))
(do ((,block-var ,(if (member ends '(:both :head))
`(component-head ,n-component)
`(block-next (component-head ,n-component)))
(block-next ,block-var)))
((eq ,block-var ,n-tail) ,result)
,@body))))
;;; like DO-BLOCKS, only iterating over the blocks in reverse order
(defmacro do-blocks-backwards ((block-var component &optional ends result) &body body)
(unless (member ends '(nil :head :tail :both))
(error "losing ENDS value: ~S" ends))
(let ((n-component (gensym))
(n-head (gensym)))
`(let* ((,n-component ,component)
(,n-head ,(if (member ends '(:both :head))
nil
`(component-head ,n-component))))
(do ((,block-var ,(if (member ends '(:both :tail))
`(component-tail ,n-component)
`(block-prev (component-tail ,n-component)))
(block-prev ,block-var)))
((eq ,block-var ,n-head) ,result)
,@body))))
;;; Iterate over the uses of CONTINUATION, binding NODE to each one
;;; successively.
;;;
;;; XXX Could change it not to replicate the code someday perhaps...
(defmacro do-uses ((node-var continuation &optional result) &body body)
(once-only ((n-cont continuation))
`(ecase (continuation-kind ,n-cont)
(:unused)
(:inside-block
(block nil
(let ((,node-var (continuation-use ,n-cont)))
,@body
,result)))
((:block-start :deleted-block-start)
(dolist (,node-var (block-start-uses (continuation-block ,n-cont))
,result)
,@body)))))
;;; Iterate over the nodes in BLOCK, binding NODE-VAR to the each node
;;; and CONT-VAR to the node's CONT. The only keyword option is
;;; RESTART-P, which causes iteration to be restarted when a node is
;;; deleted out from under us. (If not supplied, this is an error.)
;;;
;;; In the forward case, we terminate on LAST-CONT so that we don't
;;; have to worry about our termination condition being changed when
;;; new code is added during the iteration. In the backward case, we
;;; do NODE-PREV before evaluating the body so that we can keep going
;;; when the current node is deleted.
;;;
;;; When RESTART-P is supplied to DO-NODES, we start iterating over
;;; again at the beginning of the block when we run into a
;;; continuation whose block differs from the one we are trying to
;;; iterate over, either because the block was split, or because a
;;; node was deleted out from under us (hence its block is NIL.) If
;;; the block start is deleted, we just punt. With RESTART-P, we are
;;; also more careful about termination, re-indirecting the BLOCK-LAST
;;; each time.
(defmacro do-nodes ((node-var cont-var block &key restart-p) &body body)
(let ((n-block (gensym))
(n-last-cont (gensym)))
`(let* ((,n-block ,block)
,@(unless restart-p
`((,n-last-cont (node-cont (block-last ,n-block))))))
(do* ((,node-var (continuation-next (block-start ,n-block))
,(if restart-p
`(cond
((eq (continuation-block ,cont-var) ,n-block)
(aver (continuation-next ,cont-var))
(continuation-next ,cont-var))
(t
(let ((start (block-start ,n-block)))
(unless (eq (continuation-kind start)
:block-start)
(return nil))
(continuation-next start))))
`(continuation-next ,cont-var)))
(,cont-var (node-cont ,node-var) (node-cont ,node-var)))
(())
,@body
(when ,(if restart-p
`(eq ,node-var (block-last ,n-block))
`(eq ,cont-var ,n-last-cont))
(return nil))))))
;;; like DO-NODES, only iterating in reverse order
(defmacro do-nodes-backwards ((node-var cont-var block) &body body)
(let ((n-block (gensym))
(n-start (gensym))
(n-last (gensym))
(n-next (gensym)))
`(let* ((,n-block ,block)
(,n-start (block-start ,n-block))
(,n-last (block-last ,n-block)))
(do* ((,cont-var (node-cont ,n-last) ,n-next)
(,node-var ,n-last (continuation-use ,cont-var))
(,n-next (node-prev ,node-var) (node-prev ,node-var)))
(())
,@body
(when (eq ,n-next ,n-start)
(return nil))))))
;;; Bind the IR1 context variables to the values associated with NODE,
;;; so that new, extra IR1 conversion related to NODE can be done
;;; after the original conversion pass has finished.
(defmacro with-ir1-environment-from-node (node &rest forms)
`(flet ((closure-needing-ir1-environment-from-node ()
,@forms))
(%with-ir1-environment-from-node
,node
#'closure-needing-ir1-environment-from-node)))
(defun %with-ir1-environment-from-node (node fun)
(declare (type node node) (type function fun))
(let ((*current-component* (node-component node))
(*lexenv* (node-lexenv node))
(*current-path* (node-source-path node)))
(aver-live-component *current-component*)
(funcall fun)))
;;; Bind the hashtables used for keeping track of global variables,
;;; functions, etc. Also establish condition handlers.
(defmacro with-ir1-namespace (&body forms)
`(let ((*free-vars* (make-hash-table :test 'eq))
(*free-funs* (make-hash-table :test 'equal))
(*constants* (make-hash-table :test 'equal))
(*source-paths* (make-hash-table :test 'eq)))
(handler-bind ((compiler-error #'compiler-error-handler)
(style-warning #'compiler-style-warning-handler)
(warning #'compiler-warning-handler))
,@forms)))
;;; Look up NAME in the lexical environment namespace designated by
;;; SLOT, returning the <value, T>, or <NIL, NIL> if no entry. The
;;; :TEST keyword may be used to determine the name equality
;;; predicate.
(defmacro lexenv-find (name slot &key test)
(once-only ((n-res `(assoc ,name (,(let ((*package* (symbol-package 'lexenv-funs)))
(symbolicate "LEXENV-" slot))
*lexenv*)
:test ,(or test '#'eq))))
`(if ,n-res
(values (cdr ,n-res) t)
(values nil nil))))
(defmacro with-component-last-block ((component block) &body body)
(let ((old-last-block (gensym "OLD-LAST-BLOCK")))
(once-only ((component component)
(block block))
`(let ((,old-last-block (component-last-block ,component)))
(unwind-protect
(progn (setf (component-last-block ,component)
,block)
,@body)
(setf (component-last-block ,component)
,old-last-block))))))
;;;; the EVENT statistics/trace utility
;;; FIXME: This seems to be useful for troubleshooting and
;;; experimentation, not for ordinary use, so it should probably
;;; become conditional on SB-SHOW.
(eval-when (:compile-toplevel :load-toplevel :execute)
(defstruct (event-info (:copier nil))
;; The name of this event.
(name (missing-arg) :type symbol)
;; The string rescribing this event.
(description (missing-arg) :type string)
;; The name of the variable we stash this in.
(var (missing-arg) :type symbol)
;; The number of times this event has happened.
(count 0 :type fixnum)
;; The level of significance of this event.
(level (missing-arg) :type unsigned-byte)
;; If true, a function that gets called with the node that the event
;; happened to.
(action nil :type (or function null)))
;;; A hashtable from event names to event-info structures.
(defvar *event-info* (make-hash-table :test 'eq))
;;; Return the event info for Name or die trying.
(declaim (ftype (function (t) event-info) event-info-or-lose))
(defun event-info-or-lose (name)
(let ((res (gethash name *event-info*)))
(unless res
(error "~S is not the name of an event." name))
res))
) ; EVAL-WHEN
;;; Return the number of times that EVENT has happened.
(declaim (ftype (function (symbol) fixnum) event-count))
(defun event-count (name)
(event-info-count (event-info-or-lose name)))
;;; Return the function that is called when Event happens. If this is
;;; null, there is no action. The function is passed the node to which
;;; the event happened, or NIL if there is no relevant node. This may
;;; be set with SETF.
(declaim (ftype (function (symbol) (or function null)) event-action))
(defun event-action (name)
(event-info-action (event-info-or-lose name)))
(declaim (ftype (function (symbol (or function null)) (or function null))
%set-event-action))
(defun %set-event-action (name new-value)
(setf (event-info-action (event-info-or-lose name))
new-value))
(defsetf event-action %set-event-action)
;;; Return the non-negative integer which represents the level of
;;; significance of the event Name. This is used to determine whether
;;; to print a message when the event happens. This may be set with
;;; SETF.
(declaim (ftype (function (symbol) unsigned-byte) event-level))
(defun event-level (name)
(event-info-level (event-info-or-lose name)))
(declaim (ftype (function (symbol unsigned-byte) unsigned-byte) %set-event-level))
(defun %set-event-level (name new-value)
(setf (event-info-level (event-info-or-lose name))
new-value))
(defsetf event-level %set-event-level)
;;; Define a new kind of event. NAME is a symbol which names the event
;;; and DESCRIPTION is a string which describes the event. Level
;;; (default 0) is the level of significance associated with this
;;; event; it is used to determine whether to print a Note when the
;;; event happens.
(defmacro defevent (name description &optional (level 0))
(let ((var-name (symbolicate "*" name "-EVENT-INFO*")))
`(eval-when (:compile-toplevel :load-toplevel :execute)
(defvar ,var-name
(make-event-info :name ',name
:description ',description
:var ',var-name
:level ,level))
(setf (gethash ',name *event-info*) ,var-name)
',name)))
;;; the lowest level of event that will print a note when it occurs
(declaim (type unsigned-byte *event-note-threshold*))
(defvar *event-note-threshold* 1)
;;; Note that the event with the specified NAME has happened. NODE is
;;; evaluated to determine the node to which the event happened.
(defmacro event (name &optional node)
;; Increment the counter and do any action. Mumble about the event if
;; policy indicates.
`(%event ,(event-info-var (event-info-or-lose name)) ,node))
;;; Print a listing of events and their counts, sorted by the count.
;;; Events that happened fewer than Min-Count times will not be
;;; printed. Stream is the stream to write to.
(declaim (ftype (function (&optional unsigned-byte stream) (values)) event-statistics))
(defun event-statistics (&optional (min-count 1) (stream *standard-output*))
(collect ((info))
(maphash (lambda (k v)
(declare (ignore k))
(when (>= (event-info-count v) min-count)
(info v)))
*event-info*)
(dolist (event (sort (info) #'> :key #'event-info-count))
(format stream "~6D: ~A~%" (event-info-count event)
(event-info-description event)))
(values))
(values))
(declaim (ftype (function nil (values)) clear-event-statistics))
(defun clear-event-statistics ()
(maphash (lambda (k v)
(declare (ignore k))
(setf (event-info-count v) 0))
*event-info*)
(values))
;;;; functions on directly-linked lists (linked through specialized
;;;; NEXT operations)
#!-sb-fluid (declaim (inline find-in position-in))
;;; Find ELEMENT in a null-terminated LIST linked by the accessor
;;; function NEXT. KEY, TEST and TEST-NOT are the same as for generic
;;; sequence functions.
(defun find-in (next
element
list
&key
(key #'identity)
(test #'eql test-p)
(test-not #'eql not-p))
(declare (type function next key test test-not))
(when (and test-p not-p)
(error "It's silly to supply both :TEST and :TEST-NOT arguments."))
(if not-p
(do ((current list (funcall next current)))
((null current) nil)
(unless (funcall test-not (funcall key current) element)
(return current)))
(do ((current list (funcall next current)))
((null current) nil)
(when (funcall test (funcall key current) element)
(return current)))))
;;; Return the position of ELEMENT (or NIL if absent) in a
;;; null-terminated LIST linked by the accessor function NEXT. KEY,
;;; TEST and TEST-NOT are the same as for generic sequence functions.
(defun position-in (next
element
list
&key
(key #'identity)
(test #'eql test-p)
(test-not #'eql not-p))
(declare (type function next key test test-not))
(when (and test-p not-p)
(error "It's silly to supply both :TEST and :TEST-NOT arguments."))
(if not-p
(do ((current list (funcall next current))
(i 0 (1+ i)))
((null current) nil)
(unless (funcall test-not (funcall key current) element)
(return i)))
(do ((current list (funcall next current))
(i 0 (1+ i)))
((null current) nil)
(when (funcall test (funcall key current) element)
(return i)))))
;;; KLUDGE: This is expanded out twice, by cut-and-paste, in a
;;; (DEF!MACRO FOO (..) .. CL:GET-SETF-EXPANSION ..)
;;; #+SB-XC-HOST
;;; (SB!XC:DEFMACRO FOO (..) .. SB!XC:GET-SETF-EXPANSION ..)
;;; arrangement, in order to get it to work in cross-compilation. This
;;; duplication should be removed, perhaps by rewriting the macro in a more
;;; cross-compiler-friendly way, or perhaps just by using some (MACROLET ((FROB
;;; ..)) .. FROB .. FROB) form, or perhaps by completely eliminating this macro
;;; and its partner PUSH-IN, but I don't want to do it now, because the system
;;; isn't running yet, so it'd be too hard to check that my changes were
;;; correct -- WHN 19990806
(def!macro deletef-in (next place item &environment env)
(multiple-value-bind (temps vals stores store access)
(get-setf-expansion place env)
(when (cdr stores)
(error "multiple store variables for ~S" place))
(let ((n-item (gensym))
(n-place (gensym))
(n-current (gensym))
(n-prev (gensym)))
`(let* (,@(mapcar #'list temps vals)
(,n-place ,access)
(,n-item ,item))
(if (eq ,n-place ,n-item)
(let ((,(first stores) (,next ,n-place)))
,store)
(do ((,n-prev ,n-place ,n-current)
(,n-current (,next ,n-place)
(,next ,n-current)))
((eq ,n-current ,n-item)
(setf (,next ,n-prev)
(,next ,n-current)))))
(values)))))
;;; #+SB-XC-HOST SB!XC:DEFMACRO version is in late-macros.lisp. -- WHN 19990806
;;; Push ITEM onto a list linked by the accessor function NEXT that is
;;; stored in PLACE.
;;;
;;; KLUDGE: This is expanded out twice, by cut-and-paste, in a
;;; (DEF!MACRO FOO (..) .. CL:GET-SETF-EXPANSION ..)
;;; #+SB-XC-HOST
;;; (SB!XC:DEFMACRO FOO (..) .. SB!XC:GET-SETF-EXPANSION ..)
;;; arrangement, in order to get it to work in cross-compilation. This
;;; duplication should be removed, perhaps by rewriting the macro in a more
;;; cross-compiler-friendly way, or perhaps just by using some (MACROLET ((FROB
;;; ..)) .. FROB .. FROB) form, or perhaps by completely eliminating this macro
;;; and its partner DELETEF-IN, but I don't want to do it now, because the
;;; system isn't running yet, so it'd be too hard to check that my changes were
;;; correct -- WHN 19990806
(def!macro push-in (next item place &environment env)
(multiple-value-bind (temps vals stores store access)
(get-setf-expansion place env)
(when (cdr stores)
(error "multiple store variables for ~S" place))
`(let (,@(mapcar #'list temps vals)
(,(first stores) ,item))
(setf (,next ,(first stores)) ,access)
,store
(values))))
;;; #+SB-XC-HOST SB!XC:DEFMACRO version is in late-macros.lisp. -- WHN 19990806
(defmacro position-or-lose (&rest args)
`(or (position ,@args)
(error "shouldn't happen?")))