[cabec2]: src / compiler / ir1tran.lisp Maximize Restore History

Download this file

ir1tran.lisp    2178 lines (2044 with data), 87.6 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
;;;; This file contains code which does the translation from Lisp code
;;;; to the first intermediate representation (IR1).
;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; This software is derived from the CMU CL system, which was
;;;; written at Carnegie Mellon University and released into the
;;;; public domain. The software is in the public domain and is
;;;; provided with absolutely no warranty. See the COPYING and CREDITS
;;;; files for more information.
(in-package "SB!C")
(declaim (special *compiler-error-bailout*))
;;; *SOURCE-PATHS* is a hashtable from source code forms to the path
;;; taken through the source to reach the form. This provides a way to
;;; keep track of the location of original source forms, even when
;;; macroexpansions and other arbitary permutations of the code
;;; happen. This table is initialized by calling FIND-SOURCE-PATHS on
;;; the original source.
(declaim (hash-table *source-paths*))
(defvar *source-paths*)
;;; *CURRENT-COMPONENT* is the COMPONENT structure which we link
;;; blocks into as we generate them. This just serves to glue the
;;; emitted blocks together until local call analysis and flow graph
;;; canonicalization figure out what is really going on. We need to
;;; keep track of all the blocks generated so that we can delete them
;;; if they turn out to be unreachable.
;;;
;;; FIXME: It's confusing having one variable named *CURRENT-COMPONENT*
;;; and another named *COMPONENT-BEING-COMPILED*. (In CMU CL they
;;; were called *CURRENT-COMPONENT* and *COMPILE-COMPONENT* respectively,
;;; which was also confusing.)
(declaim (type (or component null) *current-component*))
(defvar *current-component*)
;;; *CURRENT-PATH* is the source path of the form we are currently
;;; translating. See NODE-SOURCE-PATH in the NODE structure.
(declaim (list *current-path*))
(defvar *current-path*)
(defvar *derive-function-types* nil
"Should the compiler assume that function types will never change,
so that it can use type information inferred from current definitions
to optimize code which uses those definitions? Setting this true
gives non-ANSI, early-CMU-CL behavior. It can be useful for improving
the efficiency of stable code.")
;;; *ALLOW-DEBUG-CATCH-TAG* controls whether we should allow the
;;; insertion a (CATCH ...) around code to allow the debugger RETURN
;;; command to function.
(defvar *allow-debug-catch-tag* t)
;;;; namespace management utilities
;;; Return a GLOBAL-VAR structure usable for referencing the global
;;; function NAME.
(defun find-free-really-fun (name)
(unless (info :function :kind name)
(setf (info :function :kind name) :function)
(setf (info :function :where-from name) :assumed))
(let ((where (info :function :where-from name)))
(when (and (eq where :assumed)
;; In the ordinary target Lisp, it's silly to report
;; undefinedness when the function is defined in the
;; running Lisp. But at cross-compile time, the current
;; definedness of a function is irrelevant to the
;; definedness at runtime, which is what matters.
#-sb-xc-host (not (fboundp name)))
(note-undefined-reference name :function))
(make-global-var :kind :global-function
:%source-name name
:type (if (or *derive-function-types*
(eq where :declared))
(info :function :type name)
(specifier-type 'function))
:where-from where)))
;;; Has the *FREE-FUNS* entry FREE-FUN become invalid?
;;;
;;; In CMU CL, the answer was implicitly always true, so this
;;; predicate didn't exist.
;;;
;;; This predicate was added to fix bug 138 in SBCL. In some obscure
;;; circumstances, it was possible for a *FREE-FUNS* entry to contain a
;;; DEFINED-FUN whose DEFINED-FUN-FUNCTIONAL object contained IR1
;;; stuff (NODEs, BLOCKs...) referring to an already compiled (aka
;;; "dead") component. When this IR1 stuff was reused in a new
;;; component, under further obscure circumstances it could be used by
;;; WITH-IR1-ENVIRONMENT-FROM-NODE to generate a binding for
;;; *CURRENT-COMPONENT*. At that point things got all confused, since
;;; IR1 conversion was sending code to a component which had already
;;; been compiled and would never be compiled again.
(defun invalid-free-fun-p (free-fun)
;; There might be other reasons that *FREE-FUN* entries could
;; become invalid, but the only one we've been bitten by so far
;; (sbcl-0.pre7.118) is this one:
(and (defined-fun-p free-fun)
(let ((functional (defined-fun-functional free-fun)))
(or (and functional
(eql (functional-kind functional) :deleted))
(and (lambda-p functional)
(or
;; (The main reason for this first test is to bail
;; out early in cases where the LAMBDA-COMPONENT
;; call in the second test would fail because links
;; it needs are uninitialized or invalid.)
;;
;; If the BIND node for this LAMBDA is null, then
;; according to the slot comments, the LAMBDA has
;; been deleted or its call has been deleted. In
;; that case, it seems rather questionable to reuse
;; it, and certainly it shouldn't be necessary to
;; reuse it, so we cheerfully declare it invalid.
(null (lambda-bind functional))
;; If this IR1 stuff belongs to a dead component,
;; then we can't reuse it without getting into
;; bizarre confusion.
(eql (component-info (lambda-component functional))
:dead)))))))
;;; If NAME already has a valid entry in *FREE-FUNS*, then return
;;; the value. Otherwise, make a new GLOBAL-VAR using information from
;;; the global environment and enter it in *FREE-FUNS*. If NAME
;;; names a macro or special form, then we error out using the
;;; supplied context which indicates what we were trying to do that
;;; demanded a function.
(declaim (ftype (function (t string) global-var) find-free-fun))
(defun find-free-fun (name context)
(or (let ((old-free-fun (gethash name *free-funs*)))
(and (not (invalid-free-fun-p old-free-fun))
old-free-fun))
(ecase (info :function :kind name)
;; FIXME: The :MACRO and :SPECIAL-FORM cases could be merged.
(:macro
(compiler-error "The macro name ~S was found ~A." name context))
(:special-form
(compiler-error "The special form name ~S was found ~A."
name
context))
((:function nil)
(check-fun-name name)
(note-if-setf-fun-and-macro name)
(let ((expansion (fun-name-inline-expansion name))
(inlinep (info :function :inlinep name)))
(setf (gethash name *free-funs*)
(if (or expansion inlinep)
(make-defined-fun
:%source-name name
:inline-expansion expansion
:inlinep inlinep
:where-from (info :function :where-from name)
:type (info :function :type name))
(find-free-really-fun name))))))))
;;; Return the LEAF structure for the lexically apparent function
;;; definition of NAME.
(declaim (ftype (function (t string) leaf) find-lexically-apparent-fun))
(defun find-lexically-apparent-fun (name context)
(let ((var (lexenv-find name funs :test #'equal)))
(cond (var
(unless (leaf-p var)
(aver (and (consp var) (eq (car var) 'macro)))
(compiler-error "found macro name ~S ~A" name context))
var)
(t
(find-free-fun name context)))))
;;; Return the LEAF node for a global variable reference to NAME. If
;;; NAME is already entered in *FREE-VARS*, then we just return the
;;; corresponding value. Otherwise, we make a new leaf using
;;; information from the global environment and enter it in
;;; *FREE-VARS*. If the variable is unknown, then we emit a warning.
(declaim (ftype (function (t) (or leaf cons heap-alien-info)) find-free-var))
(defun find-free-var (name)
(unless (symbolp name)
(compiler-error "Variable name is not a symbol: ~S." name))
(or (gethash name *free-vars*)
(let ((kind (info :variable :kind name))
(type (info :variable :type name))
(where-from (info :variable :where-from name)))
(when (and (eq where-from :assumed) (eq kind :global))
(note-undefined-reference name :variable))
(setf (gethash name *free-vars*)
(case kind
(:alien
(info :variable :alien-info name))
;; FIXME: The return value in this case should really be
;; of type SB!C::LEAF. I don't feel too badly about it,
;; because the MACRO idiom is scattered throughout this
;; file, but it should be cleaned up so we're not
;; throwing random conses around. --njf 2002-03-23
(:macro
(let ((expansion (info :variable :macro-expansion name))
(type (type-specifier (info :variable :type name))))
`(MACRO . (the ,type ,expansion))))
(:constant
(let ((value (info :variable :constant-value name)))
(make-constant :value value
:%source-name name
:type (ctype-of value)
:where-from where-from)))
(t
(make-global-var :kind kind
:%source-name name
:type type
:where-from where-from)))))))
;;; Grovel over CONSTANT checking for any sub-parts that need to be
;;; processed with MAKE-LOAD-FORM. We have to be careful, because
;;; CONSTANT might be circular. We also check that the constant (and
;;; any subparts) are dumpable at all.
(eval-when (:compile-toplevel :load-toplevel :execute)
;; The EVAL-WHEN is necessary for #.(1+ LIST-TO-HASH-TABLE-THRESHOLD)
;; below. -- AL 20010227
(def!constant list-to-hash-table-threshold 32))
(defun maybe-emit-make-load-forms (constant)
(let ((things-processed nil)
(count 0))
;; FIXME: Does this LIST-or-HASH-TABLE messiness give much benefit?
(declare (type (or list hash-table) things-processed)
(type (integer 0 #.(1+ list-to-hash-table-threshold)) count)
(inline member))
(labels ((grovel (value)
;; Unless VALUE is an object which which obviously
;; can't contain other objects
(unless (typep value
'(or #-sb-xc-host unboxed-array
symbol
number
character
string))
(etypecase things-processed
(list
(when (member value things-processed :test #'eq)
(return-from grovel nil))
(push value things-processed)
(incf count)
(when (> count list-to-hash-table-threshold)
(let ((things things-processed))
(setf things-processed
(make-hash-table :test 'eq))
(dolist (thing things)
(setf (gethash thing things-processed) t)))))
(hash-table
(when (gethash value things-processed)
(return-from grovel nil))
(setf (gethash value things-processed) t)))
(typecase value
(cons
(grovel (car value))
(grovel (cdr value)))
(simple-vector
(dotimes (i (length value))
(grovel (svref value i))))
((vector t)
(dotimes (i (length value))
(grovel (aref value i))))
((simple-array t)
;; Even though the (ARRAY T) branch does the exact
;; same thing as this branch we do this separately
;; so that the compiler can use faster versions of
;; array-total-size and row-major-aref.
(dotimes (i (array-total-size value))
(grovel (row-major-aref value i))))
((array t)
(dotimes (i (array-total-size value))
(grovel (row-major-aref value i))))
(;; In the target SBCL, we can dump any instance,
;; but in the cross-compilation host,
;; %INSTANCE-FOO functions don't work on general
;; instances, only on STRUCTURE!OBJECTs.
#+sb-xc-host structure!object
#-sb-xc-host instance
(when (emit-make-load-form value)
(dotimes (i (%instance-length value))
(grovel (%instance-ref value i)))))
(t
(compiler-error
"Objects of type ~S can't be dumped into fasl files."
(type-of value)))))))
(grovel constant)))
(values))
;;;; some flow-graph hacking utilities
;;; This function sets up the back link between the node and the
;;; continuation which continues at it.
(defun link-node-to-previous-continuation (node cont)
(declare (type node node) (type continuation cont))
(aver (not (continuation-next cont)))
(setf (continuation-next cont) node)
(setf (node-prev node) cont))
;;; This function is used to set the continuation for a node, and thus
;;; determine what receives the value and what is evaluated next. If
;;; the continuation has no block, then we make it be in the block
;;; that the node is in. If the continuation heads its block, we end
;;; our block and link it to that block. If the continuation is not
;;; currently used, then we set the DERIVED-TYPE for the continuation
;;; to that of the node, so that a little type propagation gets done.
#!-sb-fluid (declaim (inline use-continuation))
(defun use-continuation (node cont)
(declare (type node node) (type continuation cont))
(let ((node-block (continuation-block (node-prev node))))
(case (continuation-kind cont)
(:unused
(setf (continuation-block cont) node-block)
(setf (continuation-kind cont) :inside-block)
(setf (continuation-use cont) node)
(setf (node-cont node) cont))
(t
(%use-continuation node cont)))))
(defun %use-continuation (node cont)
(declare (type node node) (type continuation cont) (inline member))
(let ((block (continuation-block cont))
(node-block (continuation-block (node-prev node))))
(aver (eq (continuation-kind cont) :block-start))
(when (block-last node-block)
(error "~S has already ended." node-block))
(setf (block-last node-block) node)
(when (block-succ node-block)
(error "~S already has successors." node-block))
(setf (block-succ node-block) (list block))
(when (memq node-block (block-pred block))
(error "~S is already a predecessor of ~S." node-block block))
(push node-block (block-pred block))
(add-continuation-use node cont)
(reoptimize-continuation cont)))
;;;; exported functions
;;; This function takes a form and the top level form number for that
;;; form, and returns a lambda representing the translation of that
;;; form in the current global environment. The returned lambda is a
;;; top level lambda that can be called to cause evaluation of the
;;; forms. This lambda is in the initial component. If FOR-VALUE is T,
;;; then the value of the form is returned from the function,
;;; otherwise NIL is returned.
;;;
;;; This function may have arbitrary effects on the global environment
;;; due to processing of EVAL-WHENs. All syntax error checking is
;;; done, with erroneous forms being replaced by a proxy which signals
;;; an error if it is evaluated. Warnings about possibly inconsistent
;;; or illegal changes to the global environment will also be given.
;;;
;;; We make the initial component and convert the form in a PROGN (and
;;; an optional NIL tacked on the end.) We then return the lambda. We
;;; bind all of our state variables here, rather than relying on the
;;; global value (if any) so that IR1 conversion will be reentrant.
;;; This is necessary for EVAL-WHEN processing, etc.
;;;
;;; The hashtables used to hold global namespace info must be
;;; reallocated elsewhere. Note also that *LEXENV* is not bound, so
;;; that local macro definitions can be introduced by enclosing code.
(defun ir1-toplevel (form path for-value)
(declare (list path))
(let* ((*current-path* path)
(component (make-empty-component))
(*current-component* component))
(setf (component-name component) "initial component")
(setf (component-kind component) :initial)
(let* ((forms (if for-value `(,form) `(,form nil)))
(res (ir1-convert-lambda-body
forms ()
:debug-name (debug-namify "top level form ~S" form))))
(setf (functional-entry-fun res) res
(functional-arg-documentation res) ()
(functional-kind res) :toplevel)
res)))
;;; *CURRENT-FORM-NUMBER* is used in FIND-SOURCE-PATHS to compute the
;;; form number to associate with a source path. This should be bound
;;; to an initial value of 0 before the processing of each truly
;;; top level form.
(declaim (type index *current-form-number*))
(defvar *current-form-number*)
;;; This function is called on freshly read forms to record the
;;; initial location of each form (and subform.) Form is the form to
;;; find the paths in, and TLF-NUM is the top level form number of the
;;; truly top level form.
;;;
;;; This gets a bit interesting when the source code is circular. This
;;; can (reasonably?) happen in the case of circular list constants.
(defun find-source-paths (form tlf-num)
(declare (type index tlf-num))
(let ((*current-form-number* 0))
(sub-find-source-paths form (list tlf-num)))
(values))
(defun sub-find-source-paths (form path)
(unless (gethash form *source-paths*)
(setf (gethash form *source-paths*)
(list* 'original-source-start *current-form-number* path))
(incf *current-form-number*)
(let ((pos 0)
(subform form)
(trail form))
(declare (fixnum pos))
(macrolet ((frob ()
'(progn
(when (atom subform) (return))
(let ((fm (car subform)))
(when (consp fm)
(sub-find-source-paths fm (cons pos path)))
(incf pos))
(setq subform (cdr subform))
(when (eq subform trail) (return)))))
(loop
(frob)
(frob)
(setq trail (cdr trail)))))))
;;;; IR1-CONVERT, macroexpansion and special form dispatching
(macrolet (;; Bind *COMPILER-ERROR-BAILOUT* to a function that throws
;; out of the body and converts a proxy form instead.
(ir1-error-bailout ((start
cont
form
&optional
(proxy ``(error 'simple-program-error
:format-control "execution of a form compiled with errors:~% ~S"
:format-arguments (list ',,form))))
&body body)
(let ((skip (gensym "SKIP")))
`(block ,skip
(catch 'ir1-error-abort
(let ((*compiler-error-bailout*
(lambda ()
(throw 'ir1-error-abort nil))))
,@body
(return-from ,skip nil)))
(ir1-convert ,start ,cont ,proxy)))))
;; Translate FORM into IR1. The code is inserted as the NEXT of the
;; continuation START. CONT is the continuation which receives the
;; value of the FORM to be translated. The translators call this
;; function recursively to translate their subnodes.
;;
;; As a special hack to make life easier in the compiler, a LEAF
;; IR1-converts into a reference to that LEAF structure. This allows
;; the creation using backquote of forms that contain leaf
;; references, without having to introduce dummy names into the
;; namespace.
(declaim (ftype (function (continuation continuation t) (values)) ir1-convert))
(defun ir1-convert (start cont form)
(ir1-error-bailout (start cont form)
(let ((*current-path* (or (gethash form *source-paths*)
(cons form *current-path*))))
(if (atom form)
(cond ((and (symbolp form) (not (keywordp form)))
(ir1-convert-var start cont form))
((leaf-p form)
(reference-leaf start cont form))
(t
(reference-constant start cont form)))
(let ((opname (car form)))
(cond ((symbolp opname)
(let ((lexical-def (lexenv-find opname funs)))
(typecase lexical-def
(null (ir1-convert-global-functoid start cont form))
(functional
(ir1-convert-local-combination start
cont
form
lexical-def))
(global-var
(ir1-convert-srctran start cont lexical-def form))
(t
(aver (and (consp lexical-def)
(eq (car lexical-def) 'macro)))
(ir1-convert start cont
(careful-expand-macro (cdr lexical-def)
form))))))
((or (atom opname) (not (eq (car opname) 'lambda)))
(compiler-error "illegal function call"))
(t
;; implicitly (LAMBDA ..) because the LAMBDA
;; expression is the CAR of an executed form
(ir1-convert-combination start
cont
form
(ir1-convert-lambda
opname
:debug-name (debug-namify
"LAMBDA CAR ~S"
opname)
:allow-debug-catch-tag t))))))))
(values))
;; Generate a reference to a manifest constant, creating a new leaf
;; if necessary. If we are producing a fasl file, make sure that
;; MAKE-LOAD-FORM gets used on any parts of the constant that it
;; needs to be.
(defun reference-constant (start cont value)
(declare (type continuation start cont)
(inline find-constant))
(ir1-error-bailout
(start cont value '(error "attempt to reference undumpable constant"))
(when (producing-fasl-file)
(maybe-emit-make-load-forms value))
(let* ((leaf (find-constant value))
(res (make-ref leaf)))
(push res (leaf-refs leaf))
(link-node-to-previous-continuation res start)
(use-continuation res cont)))
(values)))
;;; Add FUNCTIONAL to the COMPONENT-REANALYZE-FUNCTIONALS, unless it's
;;; some trivial type for which reanalysis is a trivial no-op, or
;;; unless it doesn't belong in this component at all.
;;;
;;; FUNCTIONAL is returned.
(defun maybe-reanalyze-functional (functional)
(aver (not (eql (functional-kind functional) :deleted))) ; bug 148
(aver-live-component *current-component*)
;; When FUNCTIONAL is of a type for which reanalysis isn't a trivial
;; no-op
(when (typep functional '(or optional-dispatch clambda))
;; When FUNCTIONAL knows its component
(when (lambda-p functional)
(aver (eql (lambda-component functional) *current-component*)))
(pushnew functional
(component-reanalyze-functionals *current-component*)))
functional)
;;; Generate a REF node for LEAF, frobbing the LEAF structure as
;;; needed. If LEAF represents a defined function which has already
;;; been converted, and is not :NOTINLINE, then reference the
;;; functional instead.
(defun reference-leaf (start cont leaf)
(declare (type continuation start cont) (type leaf leaf))
(let* ((type (lexenv-find leaf type-restrictions))
(leaf (or (and (defined-fun-p leaf)
(not (eq (defined-fun-inlinep leaf)
:notinline))
(let ((functional (defined-fun-functional leaf)))
(when (and functional
(not (functional-kind functional)))
(maybe-reanalyze-functional functional))))
leaf))
(ref (make-ref leaf)))
(push ref (leaf-refs leaf))
(setf (leaf-ever-used leaf) t)
(link-node-to-previous-continuation ref start)
(cond (type (let* ((ref-cont (make-continuation))
(cast (make-cast ref-cont type (lexenv-policy *lexenv*))))
(setf (continuation-dest ref-cont) cast)
(use-continuation ref ref-cont)
(link-node-to-previous-continuation cast ref-cont)
(use-continuation cast cont)))
(t (use-continuation ref cont)))))
;;; Convert a reference to a symbolic constant or variable. If the
;;; symbol is entered in the LEXENV-VARS we use that definition,
;;; otherwise we find the current global definition. This is also
;;; where we pick off symbol macro and alien variable references.
(defun ir1-convert-var (start cont name)
(declare (type continuation start cont) (symbol name))
(let ((var (or (lexenv-find name vars) (find-free-var name))))
(etypecase var
(leaf
(when (lambda-var-p var)
(let ((home (continuation-home-lambda-or-null start)))
(when home
(pushnew var (lambda-calls-or-closes home))))
(when (lambda-var-ignorep var)
;; (ANSI's specification for the IGNORE declaration requires
;; that this be a STYLE-WARNING, not a full WARNING.)
(compiler-style-warn "reading an ignored variable: ~S" name)))
(reference-leaf start cont var))
(cons
(aver (eq (car var) 'MACRO))
;; FIXME: [Free] type declarations. -- APD, 2002-01-26
(ir1-convert start cont (cdr var)))
(heap-alien-info
(ir1-convert start cont `(%heap-alien ',var)))))
(values))
;;; Convert anything that looks like a special form, global function
;;; or compiler-macro call.
(defun ir1-convert-global-functoid (start cont form)
(declare (type continuation start cont) (list form))
(let* ((fun-name (first form))
(translator (info :function :ir1-convert fun-name))
(cmacro-fun (sb!xc:compiler-macro-function fun-name *lexenv*)))
(cond (translator
(when cmacro-fun
(compiler-warn "ignoring compiler macro for special form"))
(funcall translator start cont form))
((and cmacro-fun
;; gotcha: If you look up the DEFINE-COMPILER-MACRO
;; macro in the ANSI spec, you might think that
;; suppressing compiler-macro expansion when NOTINLINE
;; is some pre-ANSI hack. However, if you look up the
;; NOTINLINE declaration, you'll find that ANSI
;; requires this behavior after all.
(not (eq (info :function :inlinep fun-name) :notinline)))
(let ((res (careful-expand-macro cmacro-fun form)))
(if (eq res form)
(ir1-convert-global-functoid-no-cmacro
start cont form fun-name)
(ir1-convert start cont res))))
(t
(ir1-convert-global-functoid-no-cmacro start cont form fun-name)))))
;;; Handle the case of where the call was not a compiler macro, or was
;;; a compiler macro and passed.
(defun ir1-convert-global-functoid-no-cmacro (start cont form fun)
(declare (type continuation start cont) (list form))
;; FIXME: Couldn't all the INFO calls here be converted into
;; standard CL functions, like MACRO-FUNCTION or something?
;; And what happens with lexically-defined (MACROLET) macros
;; here, anyway?
(ecase (info :function :kind fun)
(:macro
(ir1-convert start
cont
(careful-expand-macro (info :function :macro-function fun)
form)))
((nil :function)
(ir1-convert-srctran start
cont
(find-free-fun fun "shouldn't happen! (no-cmacro)")
form))))
(defun muffle-warning-or-die ()
(muffle-warning)
(bug "no MUFFLE-WARNING restart"))
;;; Expand FORM using the macro whose MACRO-FUNCTION is FUN, trapping
;;; errors which occur during the macroexpansion.
(defun careful-expand-macro (fun form)
(let (;; a hint I (WHN) wish I'd known earlier
(hint "(hint: For more precise location, try *BREAK-ON-SIGNALS*.)"))
(flet (;; Return a string to use as a prefix in error reporting,
;; telling something about which form caused the problem.
(wherestring ()
(let ((*print-pretty* nil)
;; We rely on the printer to abbreviate FORM.
(*print-length* 3)
(*print-level* 1))
(format
nil
#-sb-xc-host "(in macroexpansion of ~S)"
;; longer message to avoid ambiguity "Was it the xc host
;; or the cross-compiler which encountered the problem?"
#+sb-xc-host "(in cross-compiler macroexpansion of ~S)"
form))))
(handler-bind ((style-warning (lambda (c)
(compiler-style-warn
"~@<~A~:@_~A~@:_~A~:>"
(wherestring) hint c)
(muffle-warning-or-die)))
;; KLUDGE: CMU CL in its wisdom (version 2.4.6 for
;; Debian Linux, anyway) raises a CL:WARNING
;; condition (not a CL:STYLE-WARNING) for undefined
;; symbols when converting interpreted functions,
;; causing COMPILE-FILE to think the file has a real
;; problem, causing COMPILE-FILE to return FAILURE-P
;; set (not just WARNINGS-P set). Since undefined
;; symbol warnings are often harmless forward
;; references, and since it'd be inordinately painful
;; to try to eliminate all such forward references,
;; these warnings are basically unavoidable. Thus, we
;; need to coerce the system to work through them,
;; and this code does so, by crudely suppressing all
;; warnings in cross-compilation macroexpansion. --
;; WHN 19990412
#+(and cmu sb-xc-host)
(warning (lambda (c)
(compiler-note
"~@<~A~:@_~
~A~:@_~
~@<(KLUDGE: That was a non-STYLE WARNING. ~
Ordinarily that would cause compilation to ~
fail. However, since we're running under ~
CMU CL, and since CMU CL emits non-STYLE ~
warnings for safe, hard-to-fix things (e.g. ~
references to not-yet-defined functions) ~
we're going to have to ignore it and ~
proceed anyway. Hopefully we're not ~
ignoring anything horrible here..)~:@>~:>"
(wherestring)
c)
(muffle-warning-or-die)))
#-(and cmu sb-xc-host)
(warning (lambda (c)
(compiler-warn "~@<~A~:@_~A~@:_~A~:>"
(wherestring) hint c)
(muffle-warning-or-die)))
(error (lambda (c)
(compiler-error "~@<~A~:@_~A~@:_~A~:>"
(wherestring) hint c))))
(funcall sb!xc:*macroexpand-hook* fun form *lexenv*)))))
;;;; conversion utilities
;;; Convert a bunch of forms, discarding all the values except the
;;; last. If there aren't any forms, then translate a NIL.
(declaim (ftype (function (continuation continuation list) (values))
ir1-convert-progn-body))
(defun ir1-convert-progn-body (start cont body)
(if (endp body)
(reference-constant start cont nil)
(let ((this-start start)
(forms body))
(loop
(let ((form (car forms)))
(when (endp (cdr forms))
(ir1-convert this-start cont form)
(return))
(let ((this-cont (make-continuation)))
(ir1-convert this-start this-cont form)
(setq this-start this-cont
forms (cdr forms)))))))
(values))
;;;; converting combinations
;;; Convert a function call where the function FUN is a LEAF. FORM is
;;; the source for the call. We return the COMBINATION node so that
;;; the caller can poke at it if it wants to.
(declaim (ftype (function (continuation continuation list leaf) combination)
ir1-convert-combination))
(defun ir1-convert-combination (start cont form fun)
(let ((fun-cont (make-continuation)))
(ir1-convert start fun-cont `(the (or function symbol) ,fun))
(ir1-convert-combination-args fun-cont cont (cdr form))))
;;; Convert the arguments to a call and make the COMBINATION
;;; node. FUN-CONT is the continuation which yields the function to
;;; call. ARGS is the list of arguments for the call, which defaults
;;; to the cdr of source. We return the COMBINATION node.
(defun ir1-convert-combination-args (fun-cont cont args)
(declare (type continuation fun-cont cont) (list args))
(let ((node (make-combination fun-cont)))
(setf (continuation-dest fun-cont) node)
(flush-continuation-externally-checkable-type fun-cont)
(collect ((arg-conts))
(let ((this-start fun-cont))
(dolist (arg args)
(let ((this-cont (make-continuation node)))
(ir1-convert this-start this-cont arg)
(setq this-start this-cont)
(arg-conts this-cont)))
(link-node-to-previous-continuation node this-start)
(use-continuation node cont)
(setf (combination-args node) (arg-conts))))
node))
;;; Convert a call to a global function. If not :NOTINLINE, then we do
;;; source transforms and try out any inline expansion. If there is no
;;; expansion, but is :INLINE, then give an efficiency note (unless a
;;; known function which will quite possibly be open-coded.) Next, we
;;; go to ok-combination conversion.
(defun ir1-convert-srctran (start cont var form)
(declare (type continuation start cont) (type global-var var))
(let ((inlinep (when (defined-fun-p var)
(defined-fun-inlinep var))))
(if (eq inlinep :notinline)
(ir1-convert-combination start cont form var)
(let ((transform (info :function
:source-transform
(leaf-source-name var))))
(if transform
(multiple-value-bind (result pass) (funcall transform form)
(if pass
(ir1-convert-maybe-predicate start cont form var)
(ir1-convert start cont result)))
(ir1-convert-maybe-predicate start cont form var))))))
;;; If the function has the PREDICATE attribute, and the CONT's DEST
;;; isn't an IF, then we convert (IF <form> T NIL), ensuring that a
;;; predicate always appears in a conditional context.
;;;
;;; If the function isn't a predicate, then we call
;;; IR1-CONVERT-COMBINATION-CHECKING-TYPE.
(defun ir1-convert-maybe-predicate (start cont form var)
(declare (type continuation start cont) (list form) (type global-var var))
(let ((info (info :function :info (leaf-source-name var))))
(if (and info
(ir1-attributep (fun-info-attributes info) predicate)
(not (if-p (continuation-dest cont))))
(ir1-convert start cont `(if ,form t nil))
(ir1-convert-combination-checking-type start cont form var))))
;;; Actually really convert a global function call that we are allowed
;;; to early-bind.
;;;
;;; If we know the function type of the function, then we check the
;;; call for syntactic legality with respect to the declared function
;;; type. If it is impossible to determine whether the call is correct
;;; due to non-constant keywords, then we give up, marking the call as
;;; :FULL to inhibit further error messages. We return true when the
;;; call is legal.
;;;
;;; If the call is legal, we also propagate type assertions from the
;;; function type to the arg and result continuations. We do this now
;;; so that IR1 optimize doesn't have to redundantly do the check
;;; later so that it can do the type propagation.
(defun ir1-convert-combination-checking-type (start cont form var)
(declare (type continuation start cont) (list form) (type leaf var))
(let* ((node (ir1-convert-combination start cont form var))
(fun-cont (basic-combination-fun node))
(type (leaf-type var)))
(when (validate-call-type node type t)
(setf (continuation-%derived-type fun-cont) type)
(setf (continuation-reoptimize fun-cont) nil)))
(values))
;;; Convert a call to a local function, or if the function has already
;;; been LET converted, then throw FUNCTIONAL to
;;; LOCALL-ALREADY-LET-CONVERTED. The THROW should only happen when we
;;; are converting inline expansions for local functions during
;;; optimization.
(defun ir1-convert-local-combination (start cont form functional)
;; The test here is for "when LET converted", as a translation of
;; the old CMU CL comments into code. Unfortunately, the old CMU CL
;; comments aren't specific enough to tell whether the correct
;; translation is FUNCTIONAL-SOMEWHAT-LETLIKE-P or
;; FUNCTIONAL-LETLIKE-P or what. The old CMU CL code assumed that
;; any non-null FUNCTIONAL-KIND meant that the function "had been
;; LET converted", which might even be right, but seems fragile, so
;; we try to be pickier.
(when (or
;; looks LET-converted
(functional-somewhat-letlike-p functional)
;; It's possible for a LET-converted function to end up
;; deleted later. In that case, for the purposes of this
;; analysis, it is LET-converted: LET-converted functionals
;; are too badly trashed to expand them inline, and deleted
;; LET-converted functionals are even worse.
(eql (functional-kind functional) :deleted))
(throw 'locall-already-let-converted functional))
;; Any other non-NIL KIND value is a case we haven't found a
;; justification for, and at least some such values (e.g. :EXTERNAL
;; and :TOPLEVEL) seem obviously wrong.
(aver (null (functional-kind functional)))
(ir1-convert-combination start
cont
form
(maybe-reanalyze-functional functional)))
;;;; PROCESS-DECLS
;;; Given a list of LAMBDA-VARs and a variable name, return the
;;; LAMBDA-VAR for that name, or NIL if it isn't found. We return the
;;; *last* variable with that name, since LET* bindings may be
;;; duplicated, and declarations always apply to the last.
(declaim (ftype (function (list symbol) (or lambda-var list))
find-in-bindings))
(defun find-in-bindings (vars name)
(let ((found nil))
(dolist (var vars)
(cond ((leaf-p var)
(when (eq (leaf-source-name var) name)
(setq found var))
(let ((info (lambda-var-arg-info var)))
(when info
(let ((supplied-p (arg-info-supplied-p info)))
(when (and supplied-p
(eq (leaf-source-name supplied-p) name))
(setq found supplied-p))))))
((and (consp var) (eq (car var) name))
(setf found (cdr var)))))
found))
;;; Called by PROCESS-DECLS to deal with a variable type declaration.
;;; If a LAMBDA-VAR being bound, we intersect the type with the var's
;;; type, otherwise we add a type restriction on the var. If a symbol
;;; macro, we just wrap a THE around the expansion.
(defun process-type-decl (decl res vars)
(declare (list decl vars) (type lexenv res))
(let ((type (compiler-specifier-type (first decl))))
(collect ((restr nil cons)
(new-vars nil cons))
(dolist (var-name (rest decl))
(let* ((bound-var (find-in-bindings vars var-name))
(var (or bound-var
(lexenv-find var-name vars)
(find-free-var var-name))))
(etypecase var
(leaf
(flet ((process-var (var bound-var)
(let* ((old-type (or (lexenv-find var type-restrictions)
(leaf-type var)))
(int (if (or (fun-type-p type)
(fun-type-p old-type))
type
(type-approx-intersection2 old-type type))))
(cond ((eq int *empty-type*)
(unless (policy *lexenv* (= inhibit-warnings 3))
(compiler-warn
"The type declarations ~S and ~S for ~S conflict."
(type-specifier old-type) (type-specifier type)
var-name)))
(bound-var (setf (leaf-type bound-var) int))
(t
(restr (cons var int)))))))
(process-var var bound-var)
(awhen (and (lambda-var-p var)
(lambda-var-specvar var))
(process-var it nil))))
(cons
;; FIXME: non-ANSI weirdness
(aver (eq (car var) 'MACRO))
(new-vars `(,var-name . (MACRO . (the ,(first decl)
,(cdr var))))))
(heap-alien-info
(compiler-error
"~S is an alien variable, so its type can't be declared."
var-name)))))
(if (or (restr) (new-vars))
(make-lexenv :default res
:type-restrictions (restr)
:vars (new-vars))
res))))
;;; This is somewhat similar to PROCESS-TYPE-DECL, but handles
;;; declarations for function variables. In addition to allowing
;;; declarations for functions being bound, we must also deal with
;;; declarations that constrain the type of lexically apparent
;;; functions.
(defun process-ftype-decl (spec res names fvars)
(declare (type type-specifier spec)
(type list names fvars)
(type lexenv res))
(let ((type (compiler-specifier-type spec)))
(collect ((res nil cons))
(dolist (name names)
(let ((found (find name fvars
:key #'leaf-source-name
:test #'equal)))
(cond
(found
(setf (leaf-type found) type)
(assert-definition-type found type
:unwinnage-fun #'compiler-note
:where "FTYPE declaration"))
(t
(res (cons (find-lexically-apparent-fun
name "in a function type declaration")
type))))))
(if (res)
(make-lexenv :default res :type-restrictions (res))
res))))
;;; Process a special declaration, returning a new LEXENV. A non-bound
;;; special declaration is instantiated by throwing a special variable
;;; into the variables.
(defun process-special-decl (spec res vars)
(declare (list spec vars) (type lexenv res))
(collect ((new-venv nil cons))
(dolist (name (cdr spec))
(let ((var (find-in-bindings vars name)))
(etypecase var
(cons
(aver (eq (car var) 'MACRO))
(compiler-error
"~S is a symbol-macro and thus can't be declared special."
name))
(lambda-var
(when (lambda-var-ignorep var)
;; ANSI's definition for "Declaration IGNORE, IGNORABLE"
;; requires that this be a STYLE-WARNING, not a full WARNING.
(compiler-style-warn
"The ignored variable ~S is being declared special."
name))
(setf (lambda-var-specvar var)
(specvar-for-binding name)))
(null
(unless (assoc name (new-venv) :test #'eq)
(new-venv (cons name (specvar-for-binding name))))))))
(if (new-venv)
(make-lexenv :default res :vars (new-venv))
res)))
;;; Return a DEFINED-FUN which copies a GLOBAL-VAR but for its INLINEP.
(defun make-new-inlinep (var inlinep)
(declare (type global-var var) (type inlinep inlinep))
(let ((res (make-defined-fun
:%source-name (leaf-source-name var)
:where-from (leaf-where-from var)
:type (leaf-type var)
:inlinep inlinep)))
(when (defined-fun-p var)
(setf (defined-fun-inline-expansion res)
(defined-fun-inline-expansion var))
(setf (defined-fun-functional res)
(defined-fun-functional var)))
res))
;;; Parse an inline/notinline declaration. If it's a local function we're
;;; defining, set its INLINEP. If a global function, add a new FENV entry.
(defun process-inline-decl (spec res fvars)
(let ((sense (cdr (assoc (first spec) *inlinep-translations* :test #'eq)))
(new-fenv ()))
(dolist (name (rest spec))
(let ((fvar (find name fvars
:key #'leaf-source-name
:test #'equal)))
(if fvar
(setf (functional-inlinep fvar) sense)
(let ((found
(find-lexically-apparent-fun
name "in an inline or notinline declaration")))
(etypecase found
(functional
(when (policy *lexenv* (>= speed inhibit-warnings))
(compiler-note "ignoring ~A declaration not at ~
definition of local function:~% ~S"
sense name)))
(global-var
(push (cons name (make-new-inlinep found sense))
new-fenv)))))))
(if new-fenv
(make-lexenv :default res :funs new-fenv)
res)))
;;; like FIND-IN-BINDINGS, but looks for #'FOO in the FVARS
(defun find-in-bindings-or-fbindings (name vars fvars)
(declare (list vars fvars))
(if (consp name)
(destructuring-bind (wot fn-name) name
(unless (eq wot 'function)
(compiler-error "The function or variable name ~S is unrecognizable."
name))
(find fn-name fvars :key #'leaf-source-name :test #'equal))
(find-in-bindings vars name)))
;;; Process an ignore/ignorable declaration, checking for various losing
;;; conditions.
(defun process-ignore-decl (spec vars fvars)
(declare (list spec vars fvars))
(dolist (name (rest spec))
(let ((var (find-in-bindings-or-fbindings name vars fvars)))
(cond
((not var)
;; ANSI's definition for "Declaration IGNORE, IGNORABLE"
;; requires that this be a STYLE-WARNING, not a full WARNING.
(compiler-style-warn "declaring unknown variable ~S to be ignored"
name))
;; FIXME: This special case looks like non-ANSI weirdness.
((and (consp var) (consp (cdr var)) (eq (cadr var) 'macro))
;; Just ignore the IGNORE decl.
)
((functional-p var)
(setf (leaf-ever-used var) t))
((and (lambda-var-specvar var) (eq (first spec) 'ignore))
;; ANSI's definition for "Declaration IGNORE, IGNORABLE"
;; requires that this be a STYLE-WARNING, not a full WARNING.
(compiler-style-warn "declaring special variable ~S to be ignored"
name))
((eq (first spec) 'ignorable)
(setf (leaf-ever-used var) t))
(t
(setf (lambda-var-ignorep var) t)))))
(values))
;;; FIXME: This is non-ANSI, so the default should be T, or it should
;;; go away, I think.
(defvar *suppress-values-declaration* nil
#!+sb-doc
"If true, processing of the VALUES declaration is inhibited.")
;;; Process a single declaration spec, augmenting the specified LEXENV
;;; RES and returning it as a result. VARS and FVARS are as described in
;;; PROCESS-DECLS.
(defun process-1-decl (raw-spec res vars fvars cont)
(declare (type list raw-spec vars fvars))
(declare (type lexenv res))
(declare (type continuation cont))
(let ((spec (canonized-decl-spec raw-spec)))
(case (first spec)
(special (process-special-decl spec res vars))
(ftype
(unless (cdr spec)
(compiler-error "no type specified in FTYPE declaration: ~S" spec))
(process-ftype-decl (second spec) res (cddr spec) fvars))
((inline notinline maybe-inline)
(process-inline-decl spec res fvars))
((ignore ignorable)
(process-ignore-decl spec vars fvars)
res)
(optimize
(make-lexenv
:default res
:policy (process-optimize-decl spec (lexenv-policy res))))
(type
(process-type-decl (cdr spec) res vars))
(values ;; FIXME -- APD, 2002-01-26
(if t ; *suppress-values-declaration*
res
(let ((types (cdr spec)))
(ir1ize-the-or-values (if (eql (length types) 1)
(car types)
`(values ,@types))
cont
res
"in VALUES declaration"))))
(dynamic-extent
(when (policy *lexenv* (> speed inhibit-warnings))
(compiler-note
"compiler limitation: ~
~% There's no special support for DYNAMIC-EXTENT (so it's ignored)."))
res)
(t
(unless (info :declaration :recognized (first spec))
(compiler-warn "unrecognized declaration ~S" raw-spec))
res))))
;;; Use a list of DECLARE forms to annotate the lists of LAMBDA-VAR
;;; and FUNCTIONAL structures which are being bound. In addition to
;;; filling in slots in the leaf structures, we return a new LEXENV
;;; which reflects pervasive special and function type declarations,
;;; (NOT)INLINE declarations and OPTIMIZE declarations. CONT is the
;;; continuation affected by VALUES declarations.
;;;
;;; This is also called in main.lisp when PROCESS-FORM handles a use
;;; of LOCALLY.
(defun process-decls (decls vars fvars cont &optional (env *lexenv*))
(declare (list decls vars fvars) (type continuation cont))
(dolist (decl decls)
(dolist (spec (rest decl))
(unless (consp spec)
(compiler-error "malformed declaration specifier ~S in ~S" spec decl))
(setq env (process-1-decl spec env vars fvars cont))))
env)
;;; Return the SPECVAR for NAME to use when we see a local SPECIAL
;;; declaration. If there is a global variable of that name, then
;;; check that it isn't a constant and return it. Otherwise, create an
;;; anonymous GLOBAL-VAR.
(defun specvar-for-binding (name)
(cond ((not (eq (info :variable :where-from name) :assumed))
(let ((found (find-free-var name)))
(when (heap-alien-info-p found)
(compiler-error
"~S is an alien variable and so can't be declared special."
name))
(unless (global-var-p found)
(compiler-error
"~S is a constant and so can't be declared special."
name))
found))
(t
(make-global-var :kind :special
:%source-name name
:where-from :declared))))
;;;; LAMBDA hackery
;;;; Note: Take a look at the compiler-overview.tex section on "Hairy
;;;; function representation" before you seriously mess with this
;;;; stuff.
;;; Verify that the NAME is a legal name for a variable and return a
;;; VAR structure for it, filling in info if it is globally special.
;;; If it is losing, we punt with a COMPILER-ERROR. NAMES-SO-FAR is a
;;; list of names which have previously been bound. If the NAME is in
;;; this list, then we error out.
(declaim (ftype (function (t list) lambda-var) varify-lambda-arg))
(defun varify-lambda-arg (name names-so-far)
(declare (inline member))
(unless (symbolp name)
(compiler-error "The lambda variable ~S is not a symbol." name))
(when (member name names-so-far :test #'eq)
(compiler-error "The variable ~S occurs more than once in the lambda list."
name))
(let ((kind (info :variable :kind name)))
(when (or (keywordp name) (eq kind :constant))
(compiler-error "The name of the lambda variable ~S is already in use to name a constant."
name))
(cond ((eq kind :special)
(let ((specvar (find-free-var name)))
(make-lambda-var :%source-name name
:type (leaf-type specvar)
:where-from (leaf-where-from specvar)
:specvar specvar)))
(t
(make-lambda-var :%source-name name)))))
;;; Make the default keyword for a &KEY arg, checking that the keyword
;;; isn't already used by one of the VARS.
(declaim (ftype (function (symbol list t) keyword) make-keyword-for-arg))
(defun make-keyword-for-arg (symbol vars keywordify)
(let ((key (if (and keywordify (not (keywordp symbol)))
(keywordicate symbol)
symbol)))
(dolist (var vars)
(let ((info (lambda-var-arg-info var)))
(when (and info
(eq (arg-info-kind info) :keyword)
(eq (arg-info-key info) key))
(compiler-error
"The keyword ~S appears more than once in the lambda list."
key))))
key))
;;; Parse a lambda list into a list of VAR structures, stripping off
;;; any &AUX bindings. Each arg name is checked for legality, and
;;; duplicate names are checked for. If an arg is globally special,
;;; the var is marked as :SPECIAL instead of :LEXICAL. &KEY,
;;; &OPTIONAL and &REST args are annotated with an ARG-INFO structure
;;; which contains the extra information. If we hit something losing,
;;; we bug out with COMPILER-ERROR. These values are returned:
;;; 1. a list of the var structures for each top level argument;
;;; 2. a flag indicating whether &KEY was specified;
;;; 3. a flag indicating whether other &KEY args are allowed;
;;; 4. a list of the &AUX variables; and
;;; 5. a list of the &AUX values.
(declaim (ftype (function (list) (values list boolean boolean list list))
make-lambda-vars))
(defun make-lambda-vars (list)
(multiple-value-bind (required optional restp rest keyp keys allowp auxp aux
morep more-context more-count)
(parse-lambda-list list)
(declare (ignore auxp)) ; since we just iterate over AUX regardless
(collect ((vars)
(names-so-far)
(aux-vars)
(aux-vals))
(flet (;; PARSE-DEFAULT deals with defaults and supplied-p args
;; for optionals and keywords args.
(parse-default (spec info)
(when (consp (cdr spec))
(setf (arg-info-default info) (second spec))
(when (consp (cddr spec))
(let* ((supplied-p (third spec))
(supplied-var (varify-lambda-arg supplied-p
(names-so-far))))
(setf (arg-info-supplied-p info) supplied-var)
(names-so-far supplied-p)
(when (> (length (the list spec)) 3)
(compiler-error
"The list ~S is too long to be an arg specifier."
spec)))))))
(dolist (name required)
(let ((var (varify-lambda-arg name (names-so-far))))
(vars var)
(names-so-far name)))
(dolist (spec optional)
(if (atom spec)
(let ((var (varify-lambda-arg spec (names-so-far))))
(setf (lambda-var-arg-info var)
(make-arg-info :kind :optional))
(vars var)
(names-so-far spec))
(let* ((name (first spec))
(var (varify-lambda-arg name (names-so-far)))
(info (make-arg-info :kind :optional)))
(setf (lambda-var-arg-info var) info)
(vars var)
(names-so-far name)
(parse-default spec info))))
(when restp
(let ((var (varify-lambda-arg rest (names-so-far))))
(setf (lambda-var-arg-info var) (make-arg-info :kind :rest))
(vars var)
(names-so-far rest)))
(when morep
(let ((var (varify-lambda-arg more-context (names-so-far))))
(setf (lambda-var-arg-info var)
(make-arg-info :kind :more-context))
(vars var)
(names-so-far more-context))
(let ((var (varify-lambda-arg more-count (names-so-far))))
(setf (lambda-var-arg-info var)
(make-arg-info :kind :more-count))
(vars var)
(names-so-far more-count)))
(dolist (spec keys)
(cond
((atom spec)
(let ((var (varify-lambda-arg spec (names-so-far))))
(setf (lambda-var-arg-info var)
(make-arg-info :kind :keyword
:key (make-keyword-for-arg spec
(vars)
t)))
(vars var)
(names-so-far spec)))
((atom (first spec))
(let* ((name (first spec))
(var (varify-lambda-arg name (names-so-far)))
(info (make-arg-info
:kind :keyword
:key (make-keyword-for-arg name (vars) t))))
(setf (lambda-var-arg-info var) info)
(vars var)
(names-so-far name)
(parse-default spec info)))
(t
(let ((head (first spec)))
(unless (proper-list-of-length-p head 2)
(error "malformed &KEY argument specifier: ~S" spec))
(let* ((name (second head))
(var (varify-lambda-arg name (names-so-far)))
(info (make-arg-info
:kind :keyword
:key (make-keyword-for-arg (first head)
(vars)
nil))))
(setf (lambda-var-arg-info var) info)
(vars var)
(names-so-far name)
(parse-default spec info))))))
(dolist (spec aux)
(cond ((atom spec)
(let ((var (varify-lambda-arg spec nil)))
(aux-vars var)
(aux-vals nil)
(names-so-far spec)))
(t
(unless (proper-list-of-length-p spec 1 2)
(compiler-error "malformed &AUX binding specifier: ~S"
spec))
(let* ((name (first spec))
(var (varify-lambda-arg name nil)))
(aux-vars var)
(aux-vals (second spec))
(names-so-far name)))))
(values (vars) keyp allowp (aux-vars) (aux-vals))))))
;;; This is similar to IR1-CONVERT-PROGN-BODY except that we
;;; sequentially bind each AUX-VAR to the corresponding AUX-VAL before
;;; converting the body. If there are no bindings, just convert the
;;; body, otherwise do one binding and recurse on the rest.
;;;
;;; FIXME: This could and probably should be converted to use
;;; SOURCE-NAME and DEBUG-NAME. But I (WHN) don't use &AUX bindings,
;;; so I'm not motivated. Patches will be accepted...
(defun ir1-convert-aux-bindings (start cont body aux-vars aux-vals)
(declare (type continuation start cont) (list body aux-vars aux-vals))
(if (null aux-vars)
(ir1-convert-progn-body start cont body)
(let ((fun-cont (make-continuation))
(fun (ir1-convert-lambda-body body
(list (first aux-vars))
:aux-vars (rest aux-vars)
:aux-vals (rest aux-vals)
:debug-name (debug-namify
"&AUX bindings ~S"
aux-vars))))
(reference-leaf start fun-cont fun)
(ir1-convert-combination-args fun-cont cont
(list (first aux-vals)))))
(values))
;;; This is similar to IR1-CONVERT-PROGN-BODY except that code to bind
;;; the SPECVAR for each SVAR to the value of the variable is wrapped
;;; around the body. If there are no special bindings, we just convert
;;; the body, otherwise we do one special binding and recurse on the
;;; rest.
;;;
;;; We make a cleanup and introduce it into the lexical environment.
;;; If there are multiple special bindings, the cleanup for the blocks
;;; will end up being the innermost one. We force CONT to start a
;;; block outside of this cleanup, causing cleanup code to be emitted
;;; when the scope is exited.
(defun ir1-convert-special-bindings (start cont body aux-vars aux-vals svars)
(declare (type continuation start cont)
(list body aux-vars aux-vals svars))
(cond
((null svars)
(ir1-convert-aux-bindings start cont body aux-vars aux-vals))
(t
(continuation-starts-block cont)
(let ((cleanup (make-cleanup :kind :special-bind))
(var (first svars))
(next-cont (make-continuation))
(nnext-cont (make-continuation)))
(ir1-convert start next-cont
`(%special-bind ',(lambda-var-specvar var) ,var))
(setf (cleanup-mess-up cleanup) (continuation-use next-cont))
(let ((*lexenv* (make-lexenv :cleanup cleanup)))
(ir1-convert next-cont nnext-cont '(%cleanup-point))
(ir1-convert-special-bindings nnext-cont cont body aux-vars aux-vals
(rest svars))))))
(values))
;;; Create a lambda node out of some code, returning the result. The
;;; bindings are specified by the list of VAR structures VARS. We deal
;;; with adding the names to the LEXENV-VARS for the conversion. The
;;; result is added to the NEW-FUNCTIONALS in the *CURRENT-COMPONENT*
;;; and linked to the component head and tail.
;;;
;;; We detect special bindings here, replacing the original VAR in the
;;; lambda list with a temporary variable. We then pass a list of the
;;; special vars to IR1-CONVERT-SPECIAL-BINDINGS, which actually emits
;;; the special binding code.
;;;
;;; We ignore any ARG-INFO in the VARS, trusting that someone else is
;;; dealing with &nonsense.
;;;
;;; AUX-VARS is a list of VAR structures for variables that are to be
;;; sequentially bound. Each AUX-VAL is a form that is to be evaluated
;;; to get the initial value for the corresponding AUX-VAR.
(defun ir1-convert-lambda-body (body
vars
&key
aux-vars
aux-vals
result
(source-name '.anonymous.)
debug-name
(note-lexical-bindings t))
(declare (list body vars aux-vars aux-vals)
(type (or continuation null) result))
;; We're about to try to put new blocks into *CURRENT-COMPONENT*.
(aver-live-component *current-component*)
(let* ((bind (make-bind))
(lambda (make-lambda :vars vars
:bind bind
:%source-name source-name
:%debug-name debug-name))
(result (or result (make-continuation))))
(continuation-starts-block result)
;; just to check: This function should fail internal assertions if
;; we didn't set up a valid debug name above.
;;
;; (In SBCL we try to make everything have a debug name, since we
;; lack the omniscient perspective the original implementors used
;; to decide which things didn't need one.)
(functional-debug-name lambda)
(setf (lambda-home lambda) lambda)
(collect ((svars)
(new-venv nil cons))
(dolist (var vars)
;; As far as I can see, LAMBDA-VAR-HOME should never have
;; been set before. Let's make sure. -- WHN 2001-09-29
(aver (null (lambda-var-home var)))
(setf (lambda-var-home var) lambda)
(let ((specvar (lambda-var-specvar var)))
(cond (specvar
(svars var)
(new-venv (cons (leaf-source-name specvar) specvar)))
(t
(when note-lexical-bindings
(note-lexical-binding (leaf-source-name var)))
(new-venv (cons (leaf-source-name var) var))))))
(let ((*lexenv* (make-lexenv :vars (new-venv)
:lambda lambda
:cleanup nil)))
(setf (bind-lambda bind) lambda)
(setf (node-lexenv bind) *lexenv*)
(let ((cont1 (make-continuation))
(cont2 (make-continuation)))
(continuation-starts-block cont1)
(link-node-to-previous-continuation bind cont1)
(use-continuation bind cont2)
(ir1-convert-special-bindings cont2 result body
aux-vars aux-vals (svars)))
(let ((block (continuation-block result)))
(when block
(let ((return (make-return :result result :lambda lambda))
(tail-set (make-tail-set :funs (list lambda)))
(dummy (make-continuation)))
(setf (lambda-tail-set lambda) tail-set)
(setf (lambda-return lambda) return)
(setf (continuation-dest result) return)
(flush-continuation-externally-checkable-type result)
(setf (block-last block) return)
(link-node-to-previous-continuation return result)
(use-continuation return dummy))
(link-blocks block (component-tail *current-component*))))))
(link-blocks (component-head *current-component*) (node-block bind))
(push lambda (component-new-functionals *current-component*))
lambda))
;;; Create the actual entry-point function for an optional entry
;;; point. The lambda binds copies of each of the VARS, then calls FUN
;;; with the argument VALS and the DEFAULTS. Presumably the VALS refer
;;; to the VARS by name. The VALS are passed in in reverse order.
;;;
;;; If any of the copies of the vars are referenced more than once,
;;; then we mark the corresponding var as EVER-USED to inhibit
;;; "defined but not read" warnings for arguments that are only used
;;; by default forms.
(defun convert-optional-entry (fun vars vals defaults)
(declare (type clambda fun) (list vars vals defaults))
(let* ((fvars (reverse vars))
(arg-vars (mapcar (lambda (var)
(make-lambda-var
:%source-name (leaf-source-name var)
:type (leaf-type var)
:where-from (leaf-where-from var)
:specvar (lambda-var-specvar var)))
fvars))
(fun (ir1-convert-lambda-body `((%funcall ,fun
,@(reverse vals)
,@defaults))
arg-vars
:debug-name "&OPTIONAL processor"
:note-lexical-bindings nil)))
(mapc (lambda (var arg-var)
(when (cdr (leaf-refs arg-var))
(setf (leaf-ever-used var) t)))
fvars arg-vars)
fun))
;;; This function deals with supplied-p vars in optional arguments. If
;;; the there is no supplied-p arg, then we just call
;;; IR1-CONVERT-HAIRY-ARGS on the remaining arguments, and generate a
;;; optional entry that calls the result. If there is a supplied-p
;;; var, then we add it into the default vars and throw a T into the
;;; entry values. The resulting entry point function is returned.
(defun generate-optional-default-entry (res default-vars default-vals
entry-vars entry-vals
vars supplied-p-p body
aux-vars aux-vals cont
source-name debug-name)
(declare (type optional-dispatch res)
(list default-vars default-vals entry-vars entry-vals vars body
aux-vars aux-vals)
(type (or continuation null) cont))
(let* ((arg (first vars))
(arg-name (leaf-source-name arg))
(info (lambda-var-arg-info arg))
(supplied-p (arg-info-supplied-p info))
(ep (if supplied-p
(ir1-convert-hairy-args
res
(list* supplied-p arg default-vars)
(list* (leaf-source-name supplied-p) arg-name default-vals)
(cons arg entry-vars)
(list* t arg-name entry-vals)
(rest vars) t body aux-vars aux-vals cont
source-name debug-name)
(ir1-convert-hairy-args
res
(cons arg default-vars)
(cons arg-name default-vals)
(cons arg entry-vars)
(cons arg-name entry-vals)
(rest vars) supplied-p-p body aux-vars aux-vals cont
source-name debug-name))))
(convert-optional-entry ep default-vars default-vals
(if supplied-p
(list (arg-info-default info) nil)
(list (arg-info-default info))))))
;;; Create the MORE-ENTRY function for the OPTIONAL-DISPATCH RES.
;;; ENTRY-VARS and ENTRY-VALS describe the fixed arguments. REST is
;;; the var for any &REST arg. KEYS is a list of the &KEY arg vars.
;;;
;;; The most interesting thing that we do is parse keywords. We create
;;; a bunch of temporary variables to hold the result of the parse,
;;; and then loop over the supplied arguments, setting the appropriate
;;; temps for the supplied keyword. Note that it is significant that
;;; we iterate over the keywords in reverse order --- this implements
;;; the CL requirement that (when a keyword appears more than once)
;;; the first value is used.
;;;
;;; If there is no supplied-p var, then we initialize the temp to the
;;; default and just pass the temp into the main entry. Since
;;; non-constant &KEY args are forcibly given a supplied-p var, we
;;; know that the default is constant, and thus safe to evaluate out
;;; of order.
;;;
;;; If there is a supplied-p var, then we create temps for both the
;;; value and the supplied-p, and pass them into the main entry,
;;; letting it worry about defaulting.
;;;
;;; We deal with :ALLOW-OTHER-KEYS by delaying unknown keyword errors
;;; until we have scanned all the keywords.
(defun convert-more-entry (res entry-vars entry-vals rest morep keys)
(declare (type optional-dispatch res) (list entry-vars entry-vals keys))
(collect ((arg-vars)
(arg-vals (reverse entry-vals))
(temps)
(body))
(dolist (var (reverse entry-vars))
(arg-vars (make-lambda-var :%source-name (leaf-source-name var)
:type (leaf-type var)
:where-from (leaf-where-from var))))
(let* ((n-context (gensym "N-CONTEXT-"))
(context-temp (make-lambda-var :%source-name n-context))
(n-count (gensym "N-COUNT-"))
(count-temp (make-lambda-var :%source-name n-count
:type (specifier-type 'index))))
(arg-vars context-temp count-temp)
(when rest
(arg-vals `(%listify-rest-args ,n-context ,n-count)))
(when morep
(arg-vals n-context)
(arg-vals n-count))
(when (optional-dispatch-keyp res)
(let ((n-index (gensym "N-INDEX-"))
(n-key (gensym "N-KEY-"))
(n-value-temp (gensym "N-VALUE-TEMP-"))
(n-allowp (gensym "N-ALLOWP-"))
(n-losep (gensym "N-LOSEP-"))
(allowp (or (optional-dispatch-allowp res)
(policy *lexenv* (zerop safety))))
(found-allow-p nil))
(temps `(,n-index (1- ,n-count)) n-key n-value-temp)
(body `(declare (fixnum ,n-index) (ignorable ,n-key ,n-value-temp)))
(collect ((tests))
(dolist (key keys)
(let* ((info (lambda-var-arg-info key))
(default (arg-info-default info))
(keyword (arg-info-key info))
(supplied-p (arg-info-supplied-p info))
(n-value (gensym "N-VALUE-"))
(clause (cond (supplied-p
(let ((n-supplied (gensym "N-SUPPLIED-")))
(temps n-supplied)
(arg-vals n-value n-supplied)
`((eq ,n-key ',keyword)
(setq ,n-supplied t)
(setq ,n-value ,n-value-temp))))
(t
(arg-vals n-value)
`((eq ,n-key ',keyword)
(setq ,n-value ,n-value-temp))))))
(when (and (not allowp) (eq keyword :allow-other-keys))
(setq found-allow-p t)
(setq clause
(append clause `((setq ,n-allowp ,n-value-temp)))))
(temps `(,n-value ,default))
(tests clause)))
(unless allowp
(temps n-allowp n-losep)
(unless found-allow-p
(tests `((eq ,n-key :allow-other-keys)
(setq ,n-allowp ,n-value-temp))))
(tests `(t
(setq ,n-losep ,n-key))))
(body
`(when (oddp ,n-count)
(%odd-key-args-error)))
(body
`(locally
(declare (optimize (safety 0)))
(loop
(when (minusp ,n-index) (return))
(setf ,n-value-temp (%more-arg ,n-context ,n-index))
(decf ,n-index)
(setq ,n-key (%more-arg ,n-context ,n-index))
(decf ,n-index)
(cond ,@(tests)))))
(unless allowp
(body `(when (and ,n-losep (not ,n-allowp))
(%unknown-key-arg-error ,n-losep)))))))
(let ((ep (ir1-convert-lambda-body
`((let ,(temps)
,@(body)
(%funcall ,(optional-dispatch-main-entry res)
,@(arg-vals))))
(arg-vars)
:debug-name (debug-namify "~S processing" '&more)
:note-lexical-bindings nil)))
(setf (optional-dispatch-more-entry res) ep))))
(values))
;;; This is called by IR1-CONVERT-HAIRY-ARGS when we run into a &REST
;;; or &KEY arg. The arguments are similar to that function, but we
;;; split off any &REST arg and pass it in separately. REST is the
;;; &REST arg var, or NIL if there is no &REST arg. KEYS is a list of
;;; the &KEY argument vars.
;;;
;;; When there are &KEY arguments, we introduce temporary gensym
;;; variables to hold the values while keyword defaulting is in
;;; progress to get the required sequential binding semantics.
;;;
;;; This gets interesting mainly when there are &KEY arguments with
;;; supplied-p vars or non-constant defaults. In either case, pass in
;;; a supplied-p var. If the default is non-constant, we introduce an
;;; IF in the main entry that tests the supplied-p var and decides
;;; whether to evaluate the default or not. In this case, the real
;;; incoming value is NIL, so we must union NULL with the declared
;;; type when computing the type for the main entry's argument.
(defun ir1-convert-more (res default-vars default-vals entry-vars entry-vals
rest more-context more-count keys supplied-p-p
body aux-vars aux-vals cont
source-name debug-name)
(declare (type optional-dispatch res)
(list default-vars default-vals entry-vars entry-vals keys body
aux-vars aux-vals)
(type (or continuation null) cont))
(collect ((main-vars (reverse default-vars))
(main-vals default-vals cons)
(bind-vars)
(bind-vals))
(when rest
(main-vars rest)
(main-vals '()))
(when more-context
(main-vars more-context)
(main-vals nil)
(main-vars more-count)
(main-vals 0))
(dolist (key keys)
(let* ((info (lambda-var-arg-info key))
(default (arg-info-default info))
(hairy-default (not (sb!xc:constantp default)))
(supplied-p (arg-info-supplied-p info))
(n-val (make-symbol (format nil
"~A-DEFAULTING-TEMP"
(leaf-source-name key))))
(key-type (leaf-type key))
(val-temp (make-lambda-var
:%source-name n-val
:type (if hairy-default
(type-union key-type (specifier-type 'null))
key-type))))
(main-vars val-temp)
(bind-vars key)
(cond ((or hairy-default supplied-p)
(let* ((n-supplied (gensym "N-SUPPLIED-"))
(supplied-temp (make-lambda-var
:%source-name n-supplied)))
(unless supplied-p
(setf (arg-info-supplied-p info) supplied-temp))
(when hairy-default
(setf (arg-info-default info) nil))
(main-vars supplied-temp)
(cond (hairy-default
(main-vals nil nil)
(bind-vals `(if ,n-supplied ,n-val ,default)))
(t
(main-vals default nil)
(bind-vals n-val)))
(when supplied-p
(bind-vars supplied-p)
(bind-vals n-supplied))))
(t
(main-vals (arg-info-default info))
(bind-vals n-val)))))
(let* ((main-entry (ir1-convert-lambda-body
body (main-vars)
:aux-vars (append (bind-vars) aux-vars)
:aux-vals (append (bind-vals) aux-vals)
:result cont
:debug-name (debug-namify "varargs entry for ~A"
(as-debug-name source-name
debug-name))))
(last-entry (convert-optional-entry main-entry default-vars
(main-vals) ())))
(setf (optional-dispatch-main-entry res) main-entry)
(convert-more-entry res entry-vars entry-vals rest more-context keys)
(push (if supplied-p-p
(convert-optional-entry last-entry entry-vars entry-vals ())
last-entry)
(optional-dispatch-entry-points res))
last-entry)))
;;; This function generates the entry point functions for the
;;; OPTIONAL-DISPATCH RES. We accomplish this by recursion on the list
;;; of arguments, analyzing the arglist on the way down and generating
;;; entry points on the way up.
;;;
;;; DEFAULT-VARS is a reversed list of all the argument vars processed
;;; so far, including supplied-p vars. DEFAULT-VALS is a list of the
;;; names of the DEFAULT-VARS.
;;;
;;; ENTRY-VARS is a reversed list of processed argument vars,
;;; excluding supplied-p vars. ENTRY-VALS is a list things that can be
;;; evaluated to get the values for all the vars from the ENTRY-VARS.
;;; It has the var name for each required or optional arg, and has T
;;; for each supplied-p arg.
;;;
;;; VARS is a list of the LAMBDA-VAR structures for arguments that
;;; haven't been processed yet. SUPPLIED-P-P is true if a supplied-p
;;; argument has already been processed; only in this case are the
;;; DEFAULT-XXX and ENTRY-XXX different.
;;;
;;; The result at each point is a lambda which should be called by the
;;; above level to default the remaining arguments and evaluate the
;;; body. We cause the body to be evaluated by converting it and
;;; returning it as the result when the recursion bottoms out.
;;;
;;; Each level in the recursion also adds its entry point function to
;;; the result OPTIONAL-DISPATCH. For most arguments, the defaulting
;;; function and the entry point function will be the same, but when
;;; SUPPLIED-P args are present they may be different.
;;;
;;; When we run into a &REST or &KEY arg, we punt out to
;;; IR1-CONVERT-MORE, which finishes for us in this case.
(defun ir1-convert-hairy-args (res default-vars default-vals
entry-vars entry-vals
vars supplied-p-p body aux-vars
aux-vals cont
source-name debug-name)
(declare (type optional-dispatch res)
(list default-vars default-vals entry-vars entry-vals vars body
aux-vars aux-vals)
(type (or continuation null) cont))
(cond ((not vars)
(if (optional-dispatch-keyp res)
;; Handle &KEY with no keys...
(ir1-convert-more res default-vars default-vals
entry-vars entry-vals
nil nil nil vars supplied-p-p body aux-vars
aux-vals cont source-name debug-name)
(let ((fun (ir1-convert-lambda-body
body (reverse default-vars)
:aux-vars aux-vars
:aux-vals aux-vals
:result cont
:debug-name (debug-namify
"hairy arg processor for ~A"
(as-debug-name source-name
debug-name)))))
(setf (optional-dispatch-main-entry res) fun)
(push (if supplied-p-p
(convert-optional-entry fun entry-vars entry-vals ())
fun)
(optional-dispatch-entry-points res))
fun)))
((not (lambda-var-arg-info (first vars)))
(let* ((arg (first vars))
(nvars (cons arg default-vars))
(nvals (cons (leaf-source-name arg) default-vals)))
(ir1-convert-hairy-args res nvars nvals nvars nvals
(rest vars) nil body aux-vars aux-vals
cont
source-name debug-name)))
(t
(let* ((arg (first vars))
(info (lambda-var-arg-info arg))
(kind (arg-info-kind info)))
(ecase kind
(:optional
(let ((ep (generate-optional-default-entry
res default-vars default-vals
entry-vars entry-vals vars supplied-p-p body
aux-vars aux-vals cont
source-name debug-name)))
(push (if supplied-p-p
(convert-optional-entry ep entry-vars entry-vals ())
ep)
(optional-dispatch-entry-points res))
ep))
(:rest
(ir1-convert-more res default-vars default-vals
entry-vars entry-vals
arg nil nil (rest vars) supplied-p-p body
aux-vars aux-vals cont
source-name debug-name))
(:more-context
(ir1-convert-more res default-vars default-vals
entry-vars entry-vals
nil arg (second vars) (cddr vars) supplied-p-p
body aux-vars aux-vals cont
source-name debug-name))
(:keyword
(ir1-convert-more res default-vars default-vals
entry-vars entry-vals
nil nil nil vars supplied-p-p body aux-vars
aux-vals cont source-name debug-name)))))))
;;; This function deals with the case where we have to make an
;;; OPTIONAL-DISPATCH to represent a LAMBDA. We cons up the result and
;;; call IR1-CONVERT-HAIRY-ARGS to do the work. When it is done, we
;;; figure out the MIN-ARGS and MAX-ARGS.
(defun ir1-convert-hairy-lambda (body vars keyp allowp aux-vars aux-vals cont
&key
(source-name '.anonymous.)
(debug-name (debug-namify
"OPTIONAL-DISPATCH ~S"
vars)))
(declare (list body vars aux-vars aux-vals) (type continuation cont))
(let ((res (make-optional-dispatch :arglist vars
:allowp allowp
:keyp keyp
:%source-name source-name
:%debug-name debug-name))
(min (or (position-if #'lambda-var-arg-info vars) (length vars))))
(aver-live-component *current-component*)
(push res (component-new-functionals *current-component*))
(ir1-convert-hairy-args res () () () () vars nil body aux-vars aux-vals
cont source-name debug-name)
(setf (optional-dispatch-min-args res) min)
(setf (optional-dispatch-max-args res)
(+ (1- (length (optional-dispatch-entry-points res))) min))
(flet ((frob (ep)
(when ep
(setf (functional-kind ep) :optional)
(setf (leaf-ever-used ep) t)
(setf (lambda-optional-dispatch ep) res))))
(dolist (ep (optional-dispatch-entry-points res)) (frob ep))
(frob (optional-dispatch-more-entry res))
(frob (optional-dispatch-main-entry res)))
res))
;;; Convert a LAMBDA form into a LAMBDA leaf or an OPTIONAL-DISPATCH leaf.
(defun ir1-convert-lambda (form &key (source-name '.anonymous.)
debug-name
allow-debug-catch-tag)
(unless (consp form)
(compiler-error "A ~S was found when expecting a lambda expression:~% ~S"
(type-of form)
form))
(unless (eq (car form) 'lambda)
(compiler-error "~S was expected but ~S was found:~% ~S"
'lambda
(car form)
form))
(unless (and (consp (cdr form)) (listp (cadr form)))
(compiler-error
"The lambda expression has a missing or non-list lambda list:~% ~S"
form))
(let ((*allow-debug-catch-tag* (and *allow-debug-catch-tag* allow-debug-catch-tag)))
(multiple-value-bind (vars keyp allow-other-keys aux-vars aux-vals)
(make-lambda-vars (cadr form))
(multiple-value-bind (forms decls) (parse-body (cddr form))
(let* ((result-cont (make-continuation))
(*lexenv* (process-decls decls
(append aux-vars vars)
nil result-cont))
(forms (if (and *allow-debug-catch-tag*
(policy *lexenv* (> debug (max speed space))))
`((catch (make-symbol "SB-DEBUG-CATCH-TAG")
,@forms))
forms))
(res (if (or (find-if #'lambda-var-arg-info vars) keyp)
(ir1-convert-hairy-lambda forms vars keyp
allow-other-keys
aux-vars aux-vals result-cont
:source-name source-name
:debug-name debug-name)
(ir1-convert-lambda-body forms vars
:aux-vars aux-vars
:aux-vals aux-vals
:result result-cont
:source-name source-name
:debug-name debug-name))))
(setf (functional-inline-expansion res) form)
(setf (functional-arg-documentation res) (cadr form))
res)))))
;;; helper for LAMBDA-like things, to massage them into a form
;;; suitable for IR1-CONVERT-LAMBDA.
;;;
;;; KLUDGE: We cons up a &REST list here, maybe for no particularly
;;; good reason. It's probably lost in the noise of all the other
;;; consing, but it's still inelegant. And we force our called
;;; functions to do full runtime keyword parsing, ugh. -- CSR,
;;; 2003-01-25
(defun ir1-convert-lambdalike (thing &rest args
&key (source-name '.anonymous.)
debug-name allow-debug-catch-tag)
(ecase (car thing)
((lambda) (apply #'ir1-convert-lambda thing args))
((instance-lambda)
(let ((res (apply #'ir1-convert-lambda
`(lambda ,@(cdr thing)) args)))
(setf (getf (functional-plist res) :fin-function) t)
res))
((named-lambda)
(let ((name (cadr thing)))
(if (legal-fun-name-p name)
(let ((res (apply #'ir1-convert-lambda `(lambda ,@(cddr thing))
:source-name name
:debug-name nil
args)))
(assert-global-function-definition-type name res)
res)
(apply #'ir1-convert-lambda `(lambda ,@(cddr thing))
:debug-name name args))))
((lambda-with-lexenv) (apply #'ir1-convert-inline-lambda thing args))))
;;;; defining global functions
;;; Convert FUN as a lambda in the null environment, but use the
;;; current compilation policy. Note that FUN may be a
;;; LAMBDA-WITH-LEXENV, so we may have to augment the environment to
;;; reflect the state at the definition site.
(defun ir1-convert-inline-lambda (fun &key
(source-name '.anonymous.)
debug-name
allow-debug-catch-tag)
(destructuring-bind (decls macros symbol-macros &rest body)
(if (eq (car fun) 'lambda-with-lexenv)
(cdr fun)
`(() () () . ,(cdr fun)))
(let ((*lexenv* (make-lexenv
:default (process-decls decls nil nil
(make-continuation)
(make-null-lexenv))
:vars (copy-list symbol-macros)
:funs (mapcar (lambda (x)
`(,(car x) .
(macro . ,(coerce (cdr x) 'function))))
macros)
:policy (lexenv-policy *lexenv*))))
(ir1-convert-lambda `(lambda ,@body)
:source-name source-name
:debug-name debug-name
:allow-debug-catch-tag nil))))
;;; Get a DEFINED-FUN object for a function we are about to define. If
;;; the function has been forward referenced, then substitute for the
;;; previous references.
(defun get-defined-fun (name)
(proclaim-as-fun-name name)
(let ((found (find-free-fun name "shouldn't happen! (defined-fun)")))
(note-name-defined name :function)
(cond ((not (defined-fun-p found))
(aver (not (info :function :inlinep name)))
(let* ((where-from (leaf-where-from found))
(res (make-defined-fun
:%source-name name
:where-from (if (eq where-from :declared)
:declared :defined)
:type (leaf-type found))))
(substitute-leaf res found)
(setf (gethash name *free-funs*) res)))
;; If *FREE-FUNS* has a previously converted definition
;; for this name, then blow it away and try again.
((defined-fun-functional found)
(remhash name *free-funs*)
(get-defined-fun name))
(t found))))
;;; Check a new global function definition for consistency with
;;; previous declaration or definition, and assert argument/result
;;; types if appropriate. This assertion is suppressed by the
;;; EXPLICIT-CHECK attribute, which is specified on functions that
;;; check their argument types as a consequence of type dispatching.
;;; This avoids redundant checks such as NUMBERP on the args to +, etc.
(defun assert-new-definition (var fun)
(let ((type (leaf-type var))
(for-real (eq (leaf-where-from var) :declared))
(info (info :function :info (leaf-source-name var))))
(assert-definition-type
fun type
;; KLUDGE: Common Lisp is such a dynamic language that in general
;; all we can do here in general is issue a STYLE-WARNING. It
;; would be nice to issue a full WARNING in the special case of
;; of type mismatches within a compilation unit (as in section
;; 3.2.2.3 of the spec) but at least as of sbcl-0.6.11, we don't
;; keep track of whether the mismatched data came from the same
;; compilation unit, so we can't do that. -- WHN 2001-02-11
:lossage-fun #'compiler-style-warn
:unwinnage-fun (cond (info #'compiler-style-warn)
(for-real #'compiler-note)
(t nil))
:really-assert
(and for-real
(not (and info
(ir1-attributep (fun-info-attributes info)
explicit-check))))
:where (if for-real
"previous declaration"
"previous definition"))))
;;; Convert a lambda doing all the basic stuff we would do if we were
;;; converting a DEFUN. In the old CMU CL system, this was used both
;;; by the %DEFUN translator and for global inline expansion, but
;;; since sbcl-0.pre7.something %DEFUN does things differently.
;;; FIXME: And now it's probably worth rethinking whether this
;;; function is a good idea.
;;;
;;; Unless a :INLINE function, we temporarily clobber the inline
;;; expansion. This prevents recursive inline expansion of
;;; opportunistic pseudo-inlines.
(defun ir1-convert-lambda-for-defun (lambda var expansion converter)
(declare (cons lambda) (function converter) (type defined-fun var))
(let ((var-expansion (defined-fun-inline-expansion var)))
(unless (eq (defined-fun-inlinep var) :inline)
(setf (defined-fun-inline-expansion var) nil))
(let* ((name (leaf-source-name var))
(fun (funcall converter lambda
:source-name name))
(fun-info (info :function :info name)))
(setf (functional-inlinep fun) (defined-fun-inlinep var))
(assert-new-definition var fun)
(setf (defined-fun-inline-expansion var) var-expansion)
;; If definitely not an interpreter stub, then substitute for
;; any old references.
(unless (or (eq (defined-fun-inlinep var) :notinline)
(not *block-compile*)
(and fun-info
(or (fun-info-transforms fun-info)
(fun-info-templates fun-info)
(fun-info-ir2-convert fun-info))))
(substitute-leaf fun var)
;; If in a simple environment, then we can allow backward
;; references to this function from following top level forms.
(when expansion (setf (defined-fun-functional var) fun)))
fun)))
;;; the even-at-compile-time part of DEFUN
;;;
;;; The INLINE-EXPANSION is a LAMBDA-WITH-LEXENV, or NIL if there is
;;; no inline expansion.
(defun %compiler-defun (name lambda-with-lexenv)
(let ((defined-fun nil)) ; will be set below if we're in the compiler
(when (boundp '*lexenv*) ; when in the compiler
(when sb!xc:*compile-print*
(compiler-mumble "~&; recognizing DEFUN ~S~%" name))
(remhash name *free-funs*)
(setf defined-fun (get-defined-fun name)))
(become-defined-fun-name name)
(cond (lambda-with-lexenv
(setf (info :function :inline-expansion-designator name)
lambda-with-lexenv)
(when defined-fun
(setf (defined-fun-inline-expansion defined-fun)
lambda-with-lexenv)))
(t
(clear-info :function :inline-expansion-designator name)))
;; old CMU CL comment:
;; If there is a type from a previous definition, blast it,
;; since it is obsolete.
(when (and defined-fun
(eq (leaf-where-from defined-fun) :defined))
(setf (leaf-type defined-fun)
;; FIXME: If this is a block compilation thing, shouldn't
;; we be setting the type to the full derived type for the
;; definition, instead of this most general function type?
(specifier-type 'function))))
(values))