[966eb4]: src / compiler / ir1util.lisp Maximize Restore History

Download this file

ir1util.lisp    2262 lines (2084 with data), 93.8 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
;;;; This file contains miscellaneous utilities used for manipulating
;;;; the IR1 representation.
;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; This software is derived from the CMU CL system, which was
;;;; written at Carnegie Mellon University and released into the
;;;; public domain. The software is in the public domain and is
;;;; provided with absolutely no warranty. See the COPYING and CREDITS
;;;; files for more information.
(in-package "SB!C")
;;;; cleanup hackery
;;; Return the innermost cleanup enclosing NODE, or NIL if there is
;;; none in its function. If NODE has no cleanup, but is in a LET,
;;; then we must still check the environment that the call is in.
(defun node-enclosing-cleanup (node)
(declare (type node node))
(do ((lexenv (node-lexenv node)
(lambda-call-lexenv (lexenv-lambda lexenv))))
((null lexenv) nil)
(let ((cup (lexenv-cleanup lexenv)))
(when cup (return cup)))))
;;; Convert the FORM in a block inserted between BLOCK1 and BLOCK2 as
;;; an implicit MV-PROG1. The inserted block is returned. NODE is used
;;; for IR1 context when converting the form. Note that the block is
;;; not assigned a number, and is linked into the DFO at the
;;; beginning. We indicate that we have trashed the DFO by setting
;;; COMPONENT-REANALYZE. If CLEANUP is supplied, then convert with
;;; that cleanup.
(defun insert-cleanup-code (block1 block2 node form &optional cleanup)
(declare (type cblock block1 block2) (type node node)
(type (or cleanup null) cleanup))
(setf (component-reanalyze (block-component block1)) t)
(with-ir1-environment-from-node node
(with-component-last-block (*current-component*
(block-next (component-head *current-component*)))
(let* ((start (make-ctran))
(block (ctran-starts-block start))
(next (make-ctran))
(*lexenv* (if cleanup
(make-lexenv :cleanup cleanup)
*lexenv*)))
(change-block-successor block1 block2 block)
(link-blocks block block2)
(ir1-convert start next nil form)
(setf (block-last block) (ctran-use next))
(setf (node-next (block-last block)) nil)
block))))
;;;; lvar use hacking
;;; Return a list of all the nodes which use LVAR.
(declaim (ftype (sfunction (lvar) list) find-uses))
(defun find-uses (lvar)
(let ((uses (lvar-uses lvar)))
(if (listp uses)
uses
(list uses))))
(declaim (ftype (sfunction (lvar) lvar) principal-lvar))
(defun principal-lvar (lvar)
(labels ((pl (lvar)
(let ((use (lvar-uses lvar)))
(if (cast-p use)
(pl (cast-value use))
lvar))))
(pl lvar)))
(defun principal-lvar-use (lvar)
(labels ((plu (lvar)
(declare (type lvar lvar))
(let ((use (lvar-uses lvar)))
(if (cast-p use)
(plu (cast-value use))
use))))
(plu lvar)))
;;; Update lvar use information so that NODE is no longer a use of its
;;; LVAR.
;;;
;;; Note: if you call this function, you may have to do a
;;; REOPTIMIZE-LVAR to inform IR1 optimization that something has
;;; changed.
(declaim (ftype (sfunction (node) (values))
delete-lvar-use
%delete-lvar-use))
;;; Just delete NODE from its LVAR uses; LVAR is preserved so it may
;;; be given a new use.
(defun %delete-lvar-use (node)
(let ((lvar (node-lvar node)))
(when lvar
(if (listp (lvar-uses lvar))
(let ((new-uses (delq node (lvar-uses lvar))))
(setf (lvar-uses lvar)
(if (singleton-p new-uses)
(first new-uses)
new-uses)))
(setf (lvar-uses lvar) nil))
(setf (node-lvar node) nil)))
(values))
;;; Delete NODE from its LVAR uses; if LVAR has no other uses, delete
;;; its DEST's block, which must be unreachable.
(defun delete-lvar-use (node)
(let ((lvar (node-lvar node)))
(when lvar
(%delete-lvar-use node)
(if (null (lvar-uses lvar))
(binding* ((dest (lvar-dest lvar) :exit-if-null)
(() (not (node-deleted dest)) :exit-if-null)
(block (node-block dest)))
(mark-for-deletion block))
(reoptimize-lvar lvar))))
(values))
;;; Update lvar use information so that NODE uses LVAR.
;;;
;;; Note: if you call this function, you may have to do a
;;; REOPTIMIZE-LVAR to inform IR1 optimization that something has
;;; changed.
(declaim (ftype (sfunction (node (or lvar null)) (values)) add-lvar-use))
(defun add-lvar-use (node lvar)
(aver (not (node-lvar node)))
(when lvar
(let ((uses (lvar-uses lvar)))
(setf (lvar-uses lvar)
(cond ((null uses)
node)
((listp uses)
(cons node uses))
(t
(list node uses))))
(setf (node-lvar node) lvar)))
(values))
;;; Return true if LVAR destination is executed immediately after
;;; NODE. Cleanups are ignored.
(defun immediately-used-p (lvar node)
(declare (type lvar lvar) (type node node))
(aver (eq (node-lvar node) lvar))
(let ((dest (lvar-dest lvar)))
(acond ((node-next node)
(eq (ctran-next it) dest))
(t (eq (block-start (first (block-succ (node-block node))))
(node-prev dest))))))
;;; Returns the defined (usually untrusted) type of the combination,
;;; or NIL if we couldn't figure it out.
(defun combination-defined-type (combination)
(let ((use (principal-lvar-use (basic-combination-fun combination))))
(or (when (ref-p use)
(let ((type (leaf-defined-type (ref-leaf use))))
(when (fun-type-p type)
(fun-type-returns type))))
*wild-type*)))
;;; Return true if LVAR destination is executed after node with only
;;; uninteresting nodes intervening.
;;;
;;; Uninteresting nodes are nodes in the same block which are either
;;; REFs, external CASTs to the same destination, or known combinations
;;; that never unwind.
(defun almost-immediately-used-p (lvar node)
(declare (type lvar lvar)
(type node node))
(aver (eq (node-lvar node) lvar))
(let ((dest (lvar-dest lvar)))
(tagbody
:next
(let ((ctran (node-next node)))
(cond (ctran
(setf node (ctran-next ctran))
(if (eq node dest)
(return-from almost-immediately-used-p t)
(typecase node
(ref
(go :next))
(cast
(when (and (eq :external (cast-type-check node))
(eq dest (node-dest node)))
(go :next)))
(combination
;; KLUDGE: Unfortunately we don't have an attribute for
;; "never unwinds", so we just special case
;; %ALLOCATE-CLOSURES: it is easy to run into with eg.
;; FORMAT and a non-constant first argument.
(when (eq '%allocate-closures (combination-fun-source-name node nil))
(go :next))))))
(t
(when (eq (block-start (first (block-succ (node-block node))))
(node-prev dest))
(return-from almost-immediately-used-p t))))))))
;;;; lvar substitution
;;; In OLD's DEST, replace OLD with NEW. NEW's DEST must initially be
;;; NIL. We do not flush OLD's DEST.
(defun substitute-lvar (new old)
(declare (type lvar old new))
(aver (not (lvar-dest new)))
(let ((dest (lvar-dest old)))
(etypecase dest
((or ref bind))
(cif (setf (if-test dest) new))
(cset (setf (set-value dest) new))
(creturn (setf (return-result dest) new))
(exit (setf (exit-value dest) new))
(basic-combination
(if (eq old (basic-combination-fun dest))
(setf (basic-combination-fun dest) new)
(setf (basic-combination-args dest)
(nsubst new old (basic-combination-args dest)))))
(cast (setf (cast-value dest) new)))
(setf (lvar-dest old) nil)
(setf (lvar-dest new) dest)
(flush-lvar-externally-checkable-type new))
(values))
;;; Replace all uses of OLD with uses of NEW, where NEW has an
;;; arbitary number of uses. NEW is supposed to be "later" than OLD.
(defun substitute-lvar-uses (new old propagate-dx)
(declare (type lvar old)
(type (or lvar null) new)
(type boolean propagate-dx))
(cond (new
(do-uses (node old)
(%delete-lvar-use node)
(add-lvar-use node new))
(reoptimize-lvar new)
(awhen (and propagate-dx (lvar-dynamic-extent old))
(setf (lvar-dynamic-extent old) nil)
(unless (lvar-dynamic-extent new)
(setf (lvar-dynamic-extent new) it)
(setf (cleanup-info it) (subst new old (cleanup-info it)))))
(when (lvar-dynamic-extent new)
(do-uses (node new)
(node-ends-block node))))
(t (flush-dest old)))
(values))
;;;; block starting/creation
;;; Return the block that CTRAN is the start of, making a block if
;;; necessary. This function is called by IR1 translators which may
;;; cause a CTRAN to be used more than once. Every CTRAN which may be
;;; used more than once must start a block by the time that anyone
;;; does a USE-CTRAN on it.
;;;
;;; We also throw the block into the next/prev list for the
;;; *CURRENT-COMPONENT* so that we keep track of which blocks we have
;;; made.
(defun ctran-starts-block (ctran)
(declare (type ctran ctran))
(ecase (ctran-kind ctran)
(:unused
(aver (not (ctran-block ctran)))
(let* ((next (component-last-block *current-component*))
(prev (block-prev next))
(new-block (make-block ctran)))
(setf (block-next new-block) next
(block-prev new-block) prev
(block-prev next) new-block
(block-next prev) new-block
(ctran-block ctran) new-block
(ctran-kind ctran) :block-start)
(aver (not (ctran-use ctran)))
new-block))
(:block-start
(ctran-block ctran))))
;;; Ensure that CTRAN is the start of a block so that the use set can
;;; be freely manipulated.
(defun ensure-block-start (ctran)
(declare (type ctran ctran))
(let ((kind (ctran-kind ctran)))
(ecase kind
((:block-start))
((:unused)
(setf (ctran-block ctran)
(make-block-key :start ctran))
(setf (ctran-kind ctran) :block-start))
((:inside-block)
(node-ends-block (ctran-use ctran)))))
(values))
;;; CTRAN must be the last ctran in an incomplete block; finish the
;;; block and start a new one if necessary.
(defun start-block (ctran)
(declare (type ctran ctran))
(aver (not (ctran-next ctran)))
(ecase (ctran-kind ctran)
(:inside-block
(let ((block (ctran-block ctran))
(node (ctran-use ctran)))
(aver (not (block-last block)))
(aver node)
(setf (block-last block) node)
(setf (node-next node) nil)
(setf (ctran-use ctran) nil)
(setf (ctran-kind ctran) :unused)
(setf (ctran-block ctran) nil)
(link-blocks block (ctran-starts-block ctran))))
(:block-start)))
;;;;
;;; Filter values of LVAR through FORM, which must be an ordinary/mv
;;; call. First argument must be 'DUMMY, which will be replaced with
;;; LVAR. In case of an ordinary call the function should not have
;;; return type NIL. We create a new "filtered" lvar.
;;;
;;; TODO: remove preconditions.
(defun filter-lvar (lvar form)
(declare (type lvar lvar) (type list form))
(let* ((dest (lvar-dest lvar))
(ctran (node-prev dest)))
(with-ir1-environment-from-node dest
(ensure-block-start ctran)
(let* ((old-block (ctran-block ctran))
(new-start (make-ctran))
(filtered-lvar (make-lvar))
(new-block (ctran-starts-block new-start)))
;; Splice in the new block before DEST, giving the new block
;; all of DEST's predecessors.
(dolist (block (block-pred old-block))
(change-block-successor block old-block new-block))
(ir1-convert new-start ctran filtered-lvar form)
;; KLUDGE: Comments at the head of this function in CMU CL
;; said that somewhere in here we
;; Set the new block's start and end cleanups to the *start*
;; cleanup of PREV's block. This overrides the incorrect
;; default from WITH-IR1-ENVIRONMENT-FROM-NODE.
;; Unfortunately I can't find any code which corresponds to this.
;; Perhaps it was a stale comment? Or perhaps I just don't
;; understand.. -- WHN 19990521
;; Replace 'DUMMY with the LVAR. (We can find 'DUMMY because
;; no LET conversion has been done yet.) The [mv-]combination
;; code from the call in the form will be the use of the new
;; check lvar. We substitute for the first argument of
;; this node.
(let* ((node (lvar-use filtered-lvar))
(args (basic-combination-args node))
(victim (first args)))
(aver (eq (constant-value (ref-leaf (lvar-use victim)))
'dummy))
(substitute-lvar filtered-lvar lvar)
(substitute-lvar lvar victim)
(flush-dest victim))
;; Invoking local call analysis converts this call to a LET.
(locall-analyze-component *current-component*))))
(values))
;;; Delete NODE and VALUE. It may result in some calls becoming tail.
(defun delete-filter (node lvar value)
(aver (eq (lvar-dest value) node))
(aver (eq (node-lvar node) lvar))
(cond (lvar (collect ((merges))
(when (return-p (lvar-dest lvar))
(do-uses (use value)
(when (and (basic-combination-p use)
(eq (basic-combination-kind use) :local))
(merges use))))
(substitute-lvar-uses lvar value
(and lvar (eq (lvar-uses lvar) node)))
(%delete-lvar-use node)
(prog1
(unlink-node node)
(dolist (merge (merges))
(merge-tail-sets merge)))))
(t (flush-dest value)
(unlink-node node))))
;;; Make a CAST and insert it into IR1 before node NEXT.
(defun insert-cast-before (next lvar type policy)
(declare (type node next) (type lvar lvar) (type ctype type))
(with-ir1-environment-from-node next
(let* ((ctran (node-prev next))
(cast (make-cast lvar type policy))
(internal-ctran (make-ctran)))
(setf (ctran-next ctran) cast
(node-prev cast) ctran)
(use-ctran cast internal-ctran)
(link-node-to-previous-ctran next internal-ctran)
(setf (lvar-dest lvar) cast)
(reoptimize-lvar lvar)
(when (return-p next)
(node-ends-block cast))
(setf (block-attributep (block-flags (node-block cast))
type-check type-asserted)
t)
cast)))
;;;; miscellaneous shorthand functions
;;; Return the home (i.e. enclosing non-LET) CLAMBDA for NODE. Since
;;; the LEXENV-LAMBDA may be deleted, we must chain up the
;;; LAMBDA-CALL-LEXENV thread until we find a CLAMBDA that isn't
;;; deleted, and then return its home.
(defun node-home-lambda (node)
(declare (type node node))
(do ((fun (lexenv-lambda (node-lexenv node))
(lexenv-lambda (lambda-call-lexenv fun))))
((not (memq (functional-kind fun) '(:deleted :zombie)))
(lambda-home fun))
(when (eq (lambda-home fun) fun)
(return fun))))
#!-sb-fluid (declaim (inline node-block))
(defun node-block (node)
(ctran-block (node-prev node)))
(declaim (ftype (sfunction (node) component) node-component))
(defun node-component (node)
(block-component (node-block node)))
(declaim (ftype (sfunction (node) physenv) node-physenv))
(defun node-physenv (node)
(lambda-physenv (node-home-lambda node)))
#!-sb-fluid (declaim (inline node-dest))
(defun node-dest (node)
(awhen (node-lvar node) (lvar-dest it)))
#!-sb-fluid (declaim (inline node-stack-allocate-p))
(defun node-stack-allocate-p (node)
(awhen (node-lvar node)
(lvar-dynamic-extent it)))
(defun flushable-combination-p (call)
(declare (type combination call))
(let ((kind (combination-kind call))
(info (combination-fun-info call)))
(when (and (eq kind :known) (fun-info-p info))
(let ((attr (fun-info-attributes info)))
(when (and (not (ir1-attributep attr call))
;; FIXME: For now, don't consider potentially flushable
;; calls flushable when they have the CALL attribute.
;; Someday we should look at the functional args to
;; determine if they have any side effects.
(if (policy call (= safety 3))
(ir1-attributep attr flushable)
(ir1-attributep attr unsafely-flushable)))
t)))))
;;;; DYNAMIC-EXTENT related
(defun note-no-stack-allocation (lvar &key flush)
(do-uses (use (principal-lvar lvar))
(unless (or
;; Don't complain about not being able to stack allocate constants.
(and (ref-p use) (constant-p (ref-leaf use)))
;; If we're flushing, don't complain if we can flush the combination.
(and flush (combination-p use) (flushable-combination-p use)))
(let ((*compiler-error-context* use))
(compiler-notify "could not stack allocate the result of ~S"
(find-original-source (node-source-path use)))))))
(defun use-good-for-dx-p (use dx &optional component)
;; FIXME: Can casts point to LVARs in other components?
;; RECHECK-DYNAMIC-EXTENT-LVARS assumes that they can't -- that is, that the
;; PRINCIPAL-LVAR is always in the same component as the original one. It
;; would be either good to have an explanation of why casts don't point
;; across components, or an explanation of when they do it. ...in the
;; meanwhile AVER that our assumption holds true.
(aver (or (not component) (eq component (node-component use))))
(or (dx-combination-p use dx)
(and (cast-p use)
(not (cast-type-check use))
(lvar-good-for-dx-p (cast-value use) dx component))
(and (trivial-lambda-var-ref-p use)
(let ((uses (lvar-uses (trivial-lambda-var-ref-lvar use))))
(or (eq use uses)
(lvar-good-for-dx-p (trivial-lambda-var-ref-lvar use) dx component))))))
(defun lvar-good-for-dx-p (lvar dx &optional component)
(let ((uses (lvar-uses lvar)))
(if (listp uses)
(when uses
(every (lambda (use)
(use-good-for-dx-p use dx component))
uses))
(use-good-for-dx-p uses dx component))))
(defun known-dx-combination-p (use dx)
(and (eq (combination-kind use) :known)
(let ((info (combination-fun-info use)))
(or (awhen (fun-info-stack-allocate-result info)
(funcall it use dx))
(awhen (fun-info-result-arg info)
(let ((args (combination-args use)))
(lvar-good-for-dx-p (if (zerop it)
(car args)
(nth it args))
dx)))))))
(defun dx-combination-p (use dx)
(and (combination-p use)
(or
;; Known, and can do DX.
(known-dx-combination-p use dx)
;; Possibly a not-yet-eliminated lambda which ends up returning the
;; results of an actual known DX combination.
(let* ((fun (combination-fun use))
(ref (principal-lvar-use fun))
(clambda (when (ref-p ref)
(ref-leaf ref)))
(creturn (when (lambda-p clambda)
(lambda-return clambda)))
(result-use (when (return-p creturn)
(principal-lvar-use (return-result creturn)))))
;; FIXME: We should be able to deal with multiple uses here as well.
(and (dx-combination-p result-use dx)
(combination-args-flow-cleanly-p use result-use dx))))))
(defun combination-args-flow-cleanly-p (combination1 combination2 dx)
(labels ((recurse (combination)
(or (eq combination combination2)
(if (known-dx-combination-p combination dx)
(let ((dest (lvar-dest (combination-lvar combination))))
(and (combination-p dest)
(recurse dest)))
(let* ((fun1 (combination-fun combination))
(ref1 (principal-lvar-use fun1))
(clambda1 (when (ref-p ref1) (ref-leaf ref1))))
(when (lambda-p clambda1)
(dolist (var (lambda-vars clambda1) t)
(dolist (var-ref (lambda-var-refs var))
(let ((dest (lvar-dest (ref-lvar var-ref))))
(unless (and (combination-p dest) (recurse dest))
(return-from combination-args-flow-cleanly-p nil)))))))))))
(recurse combination1)))
(defun trivial-lambda-var-ref-p (use)
(and (ref-p use)
(let ((var (ref-leaf use)))
;; lambda-var, no SETS, not explicitly indefinite-extent.
(when (and (lambda-var-p var) (not (lambda-var-sets var))
(neq :indefinite (lambda-var-extent var)))
(let ((home (lambda-var-home var))
(refs (lambda-var-refs var)))
;; bound by a system lambda, no other REFS
(when (and (lambda-system-lambda-p home)
(eq use (car refs)) (not (cdr refs)))
;; the LAMBDA this var is bound by has only a single REF, going
;; to a combination
(let* ((lambda-refs (lambda-refs home))
(primary (car lambda-refs)))
(and (ref-p primary)
(not (cdr lambda-refs))
(combination-p (lvar-dest (ref-lvar primary)))))))))))
(defun trivial-lambda-var-ref-lvar (use)
(let* ((this (ref-leaf use))
(home (lambda-var-home this)))
(multiple-value-bind (fun vars)
(values home (lambda-vars home))
(let* ((combination (lvar-dest (ref-lvar (car (lambda-refs fun)))))
(args (combination-args combination)))
(assert (= (length vars) (length args)))
(loop for var in vars
for arg in args
when (eq var this)
return arg)))))
;;; This needs to play nice with LVAR-GOOD-FOR-DX-P and friends.
(defun handle-nested-dynamic-extent-lvars (dx lvar &optional recheck-component)
(let ((uses (lvar-uses lvar)))
;; DX value generators must end their blocks: see UPDATE-UVL-LIVE-SETS.
;; Uses of mupltiple-use LVARs already end their blocks, so we just need
;; to process uses of single-use LVARs.
(when (node-p uses)
(node-ends-block uses))
;; If this LVAR's USE is good for DX, it is either a CAST, or it
;; must be a regular combination whose arguments are potentially DX as well.
(flet ((recurse (use)
(etypecase use
(cast
(handle-nested-dynamic-extent-lvars
dx (cast-value use) recheck-component))
(combination
(loop for arg in (combination-args use)
;; deleted args show up as NIL here
when (and arg
(lvar-good-for-dx-p arg dx recheck-component))
append (handle-nested-dynamic-extent-lvars
dx arg recheck-component)))
(ref
(let* ((other (trivial-lambda-var-ref-lvar use)))
(unless (eq other lvar)
(handle-nested-dynamic-extent-lvars
dx other recheck-component)))))))
(cons (cons dx lvar)
(if (listp uses)
(loop for use in uses
when (use-good-for-dx-p use dx recheck-component)
nconc (recurse use))
(when (use-good-for-dx-p uses dx recheck-component)
(recurse uses)))))))
;;;;; BLOCK UTILS
(declaim (inline block-to-be-deleted-p))
(defun block-to-be-deleted-p (block)
(or (block-delete-p block)
(eq (functional-kind (block-home-lambda block)) :deleted)))
;;; Checks whether NODE is in a block to be deleted
(declaim (inline node-to-be-deleted-p))
(defun node-to-be-deleted-p (node)
(block-to-be-deleted-p (node-block node)))
(declaim (ftype (sfunction (clambda) cblock) lambda-block))
(defun lambda-block (clambda)
(node-block (lambda-bind clambda)))
(declaim (ftype (sfunction (clambda) component) lambda-component))
(defun lambda-component (clambda)
(block-component (lambda-block clambda)))
(declaim (ftype (sfunction (cblock) node) block-start-node))
(defun block-start-node (block)
(ctran-next (block-start block)))
;;; Return the enclosing cleanup for environment of the first or last
;;; node in BLOCK.
(defun block-start-cleanup (block)
(node-enclosing-cleanup (block-start-node block)))
(defun block-end-cleanup (block)
(node-enclosing-cleanup (block-last block)))
;;; Return the non-LET LAMBDA that holds BLOCK's code, or NIL
;;; if there is none.
;;;
;;; There can legitimately be no home lambda in dead code early in the
;;; IR1 conversion process, e.g. when IR1-converting the SETQ form in
;;; (BLOCK B (RETURN-FROM B) (SETQ X 3))
;;; where the block is just a placeholder during parsing and doesn't
;;; actually correspond to code which will be written anywhere.
(declaim (ftype (sfunction (cblock) (or clambda null)) block-home-lambda-or-null))
(defun block-home-lambda-or-null (block)
(if (node-p (block-last block))
;; This is the old CMU CL way of doing it.
(node-home-lambda (block-last block))
;; Now that SBCL uses this operation more aggressively than CMU
;; CL did, the old CMU CL way of doing it can fail in two ways.
;; 1. It can fail in a few cases even when a meaningful home
;; lambda exists, e.g. in IR1-CONVERT of one of the legs of
;; an IF.
;; 2. It can fail when converting a form which is born orphaned
;; so that it never had a meaningful home lambda, e.g. a form
;; which follows a RETURN-FROM or GO form.
(let ((pred-list (block-pred block)))
;; To deal with case 1, we reason that
;; previous-in-target-execution-order blocks should be in the
;; same lambda, and that they seem in practice to be
;; previous-in-compilation-order blocks too, so we look back
;; to find one which is sufficiently initialized to tell us
;; what the home lambda is.
(if pred-list
;; We could get fancy about this, flooding through the
;; graph of all the previous blocks, but in practice it
;; seems to work just to grab the first previous block and
;; use it.
(node-home-lambda (block-last (first pred-list)))
;; In case 2, we end up with an empty PRED-LIST and
;; have to punt: There's no home lambda.
nil))))
;;; Return the non-LET LAMBDA that holds BLOCK's code.
(declaim (ftype (sfunction (cblock) clambda) block-home-lambda))
(defun block-home-lambda (block)
(block-home-lambda-or-null block))
;;; Return the IR1 physical environment for BLOCK.
(declaim (ftype (sfunction (cblock) physenv) block-physenv))
(defun block-physenv (block)
(lambda-physenv (block-home-lambda block)))
;;; Return the Top Level Form number of PATH, i.e. the ordinal number
;;; of its original source's top level form in its compilation unit.
(defun source-path-tlf-number (path)
(declare (list path))
(car (last path)))
;;; Return the (reversed) list for the PATH in the original source
;;; (with the Top Level Form number last).
(defun source-path-original-source (path)
(declare (list path) (inline member))
(cddr (member 'original-source-start path :test #'eq)))
;;; Return the Form Number of PATH's original source inside the Top
;;; Level Form that contains it. This is determined by the order that
;;; we walk the subforms of the top level source form.
(defun source-path-form-number (path)
(declare (list path) (inline member))
(cadr (member 'original-source-start path :test #'eq)))
;;; Return a list of all the enclosing forms not in the original
;;; source that converted to get to this form, with the immediate
;;; source for node at the start of the list.
(defun source-path-forms (path)
(subseq path 0 (position 'original-source-start path)))
;;; Return the innermost source form for NODE.
(defun node-source-form (node)
(declare (type node node))
(let* ((path (node-source-path node))
(forms (source-path-forms path)))
(if forms
(first forms)
(values (find-original-source path)))))
;;; Return NODE-SOURCE-FORM, T if lvar has a single use, otherwise
;;; NIL, NIL.
(defun lvar-source (lvar)
(let ((use (lvar-uses lvar)))
(if (listp use)
(values nil nil)
(values (node-source-form use) t))))
;;; Return the unique node, delivering a value to LVAR.
#!-sb-fluid (declaim (inline lvar-use))
(defun lvar-use (lvar)
(the (not list) (lvar-uses lvar)))
#!-sb-fluid (declaim (inline lvar-has-single-use-p))
(defun lvar-has-single-use-p (lvar)
(typep (lvar-uses lvar) '(not list)))
;;; Return the LAMBDA that is CTRAN's home, or NIL if there is none.
(declaim (ftype (sfunction (ctran) (or clambda null))
ctran-home-lambda-or-null))
(defun ctran-home-lambda-or-null (ctran)
;; KLUDGE: This function is a post-CMU-CL hack by WHN, and this
;; implementation might not be quite right, or might be uglier than
;; necessary. It appears that the original Python never found a need
;; to do this operation. The obvious things based on
;; NODE-HOME-LAMBDA of CTRAN-USE usually work; then if that fails,
;; BLOCK-HOME-LAMBDA of CTRAN-BLOCK works, given that we
;; generalize it enough to grovel harder when the simple CMU CL
;; approach fails, and furthermore realize that in some exceptional
;; cases it might return NIL. -- WHN 2001-12-04
(cond ((ctran-use ctran)
(node-home-lambda (ctran-use ctran)))
((ctran-block ctran)
(block-home-lambda-or-null (ctran-block ctran)))
(t
(bug "confused about home lambda for ~S" ctran))))
;;; Return the LAMBDA that is CTRAN's home.
(declaim (ftype (sfunction (ctran) clambda) ctran-home-lambda))
(defun ctran-home-lambda (ctran)
(ctran-home-lambda-or-null ctran))
(declaim (inline cast-single-value-p))
(defun cast-single-value-p (cast)
(not (values-type-p (cast-asserted-type cast))))
#!-sb-fluid (declaim (inline lvar-single-value-p))
(defun lvar-single-value-p (lvar)
(or (not lvar)
(let ((dest (lvar-dest lvar)))
(typecase dest
((or creturn exit)
nil)
(mv-combination
(eq (basic-combination-fun dest) lvar))
(cast
(locally
(declare (notinline lvar-single-value-p))
(and (cast-single-value-p dest)
(lvar-single-value-p (node-lvar dest)))))
(t
t)))))
(defun principal-lvar-end (lvar)
(loop for prev = lvar then (node-lvar dest)
for dest = (and prev (lvar-dest prev))
while (cast-p dest)
finally (return (values dest prev))))
(defun principal-lvar-single-valuify (lvar)
(loop for prev = lvar then (node-lvar dest)
for dest = (and prev (lvar-dest prev))
while (cast-p dest)
do (setf (node-derived-type dest)
(make-short-values-type (list (single-value-type
(node-derived-type dest)))))
(reoptimize-lvar prev)))
;;; Return a new LEXENV just like DEFAULT except for the specified
;;; slot values. Values for the alist slots are NCONCed to the
;;; beginning of the current value, rather than replacing it entirely.
(defun make-lexenv (&key (default *lexenv*)
funs vars blocks tags
type-restrictions
(lambda (lexenv-lambda default))
(cleanup (lexenv-cleanup default))
(handled-conditions (lexenv-handled-conditions default))
(disabled-package-locks
(lexenv-disabled-package-locks default))
(policy (lexenv-policy default))
(user-data (lexenv-user-data default)))
(macrolet ((frob (var slot)
`(let ((old (,slot default)))
(if ,var
(nconc ,var old)
old))))
(internal-make-lexenv
(frob funs lexenv-funs)
(frob vars lexenv-vars)
(frob blocks lexenv-blocks)
(frob tags lexenv-tags)
(frob type-restrictions lexenv-type-restrictions)
lambda
cleanup handled-conditions disabled-package-locks
policy
user-data)))
;;; Makes a LEXENV, suitable for using in a MACROLET introduced
;;; macroexpander
(defun make-restricted-lexenv (lexenv)
(flet ((fun-good-p (fun)
(destructuring-bind (name . thing) fun
(declare (ignore name))
(etypecase thing
(functional nil)
(global-var t)
(cons (aver (eq (car thing) 'macro))
t))))
(var-good-p (var)
(destructuring-bind (name . thing) var
(declare (ignore name))
(etypecase thing
;; The evaluator will mark lexicals with :BOGUS when it
;; translates an interpreter lexenv to a compiler
;; lexenv.
((or leaf #!+sb-eval (member :bogus)) nil)
(cons (aver (eq (car thing) 'macro))
t)
(heap-alien-info nil)))))
(internal-make-lexenv
(remove-if-not #'fun-good-p (lexenv-funs lexenv))
(remove-if-not #'var-good-p (lexenv-vars lexenv))
nil
nil
(lexenv-type-restrictions lexenv) ; XXX
nil
nil
(lexenv-handled-conditions lexenv)
(lexenv-disabled-package-locks lexenv)
(lexenv-policy lexenv)
(lexenv-user-data lexenv))))
;;;; flow/DFO/component hackery
;;; Join BLOCK1 and BLOCK2.
(defun link-blocks (block1 block2)
(declare (type cblock block1 block2))
(setf (block-succ block1)
(if (block-succ block1)
(%link-blocks block1 block2)
(list block2)))
(push block1 (block-pred block2))
(values))
(defun %link-blocks (block1 block2)
(declare (type cblock block1 block2))
(let ((succ1 (block-succ block1)))
(aver (not (memq block2 succ1)))
(cons block2 succ1)))
;;; This is like LINK-BLOCKS, but we separate BLOCK1 and BLOCK2. If
;;; this leaves a successor with a single predecessor that ends in an
;;; IF, then set BLOCK-TEST-MODIFIED so that any test constraint will
;;; now be able to be propagated to the successor.
(defun unlink-blocks (block1 block2)
(declare (type cblock block1 block2))
(let ((succ1 (block-succ block1)))
(if (eq block2 (car succ1))
(setf (block-succ block1) (cdr succ1))
(do ((succ (cdr succ1) (cdr succ))
(prev succ1 succ))
((eq (car succ) block2)
(setf (cdr prev) (cdr succ)))
(aver succ))))
(let ((new-pred (delq block1 (block-pred block2))))
(setf (block-pred block2) new-pred)
(when (singleton-p new-pred)
(let ((pred-block (first new-pred)))
(when (if-p (block-last pred-block))
(setf (block-test-modified pred-block) t)))))
(values))
;;; Swing the succ/pred link between BLOCK and OLD to be between BLOCK
;;; and NEW. If BLOCK ends in an IF, then we have to fix up the
;;; consequent/alternative blocks to point to NEW. We also set
;;; BLOCK-TEST-MODIFIED so that any test constraint will be applied to
;;; the new successor.
(defun change-block-successor (block old new)
(declare (type cblock new old block))
(unlink-blocks block old)
(let ((last (block-last block))
(comp (block-component block)))
(setf (component-reanalyze comp) t)
(typecase last
(cif
(setf (block-test-modified block) t)
(let* ((succ-left (block-succ block))
(new (if (and (eq new (component-tail comp))
succ-left)
(first succ-left)
new)))
(unless (memq new succ-left)
(link-blocks block new))
(macrolet ((frob (slot)
`(when (eq (,slot last) old)
(setf (,slot last) new))))
(frob if-consequent)
(frob if-alternative)
(when (eq (if-consequent last)
(if-alternative last))
(reoptimize-component (block-component block) :maybe)))))
(t
(unless (memq new (block-succ block))
(link-blocks block new)))))
(values))
;;; Unlink a block from the next/prev chain. We also null out the
;;; COMPONENT.
(declaim (ftype (sfunction (cblock) (values)) remove-from-dfo))
(defun remove-from-dfo (block)
(let ((next (block-next block))
(prev (block-prev block)))
(setf (block-component block) nil)
(setf (block-next prev) next)
(setf (block-prev next) prev))
(values))
;;; Add BLOCK to the next/prev chain following AFTER. We also set the
;;; COMPONENT to be the same as for AFTER.
(defun add-to-dfo (block after)
(declare (type cblock block after))
(let ((next (block-next after))
(comp (block-component after)))
(aver (not (eq (component-kind comp) :deleted)))
(setf (block-component block) comp)
(setf (block-next after) block)
(setf (block-prev block) after)
(setf (block-next block) next)
(setf (block-prev next) block))
(values))
;;; List all NLX-INFOs which BLOCK can exit to.
;;;
;;; We hope that no cleanup actions are performed in the middle of
;;; BLOCK, so it is enough to look only at cleanups in the block
;;; end. The tricky thing is a special cleanup block; all its nodes
;;; have the same cleanup info, corresponding to the start, so the
;;; same approach returns safe result.
(defun map-block-nlxes (fun block &optional dx-cleanup-fun)
(loop for cleanup = (block-end-cleanup block)
then (node-enclosing-cleanup (cleanup-mess-up cleanup))
while cleanup
do (let ((mess-up (cleanup-mess-up cleanup)))
(case (cleanup-kind cleanup)
((:block :tagbody)
(aver (entry-p mess-up))
(loop for exit in (entry-exits mess-up)
for nlx-info = (exit-nlx-info exit)
do (funcall fun nlx-info)))
((:catch :unwind-protect)
(aver (combination-p mess-up))
(let* ((arg-lvar (first (basic-combination-args mess-up)))
(nlx-info (constant-value (ref-leaf (lvar-use arg-lvar)))))
(funcall fun nlx-info)))
((:dynamic-extent)
(when dx-cleanup-fun
(funcall dx-cleanup-fun cleanup)))))))
;;; Set the FLAG for all the blocks in COMPONENT to NIL, except for
;;; the head and tail which are set to T.
(declaim (ftype (sfunction (component) (values)) clear-flags))
(defun clear-flags (component)
(let ((head (component-head component))
(tail (component-tail component)))
(setf (block-flag head) t)
(setf (block-flag tail) t)
(do-blocks (block component)
(setf (block-flag block) nil)))
(values))
;;; Make a component with no blocks in it. The BLOCK-FLAG is initially
;;; true in the head and tail blocks.
(declaim (ftype (sfunction () component) make-empty-component))
(defun make-empty-component ()
(let* ((head (make-block-key :start nil :component nil))
(tail (make-block-key :start nil :component nil))
(res (make-component head tail)))
(setf (block-flag head) t)
(setf (block-flag tail) t)
(setf (block-component head) res)
(setf (block-component tail) res)
(setf (block-next head) tail)
(setf (block-prev tail) head)
res))
;;; Make NODE the LAST node in its block, splitting the block if necessary.
;;; The new block is added to the DFO immediately following NODE's block.
(defun node-ends-block (node)
(declare (type node node))
(let* ((block (node-block node))
(start (node-next node))
(last (block-last block)))
(check-type last node)
(unless (eq last node)
(aver (and (eq (ctran-kind start) :inside-block)
(not (block-delete-p block))))
(let* ((succ (block-succ block))
(new-block
(make-block-key :start start
:component (block-component block)
:succ succ :last last)))
(setf (ctran-kind start) :block-start)
(setf (ctran-use start) nil)
(setf (block-last block) node)
(setf (node-next node) nil)
(dolist (b succ)
(setf (block-pred b)
(cons new-block (remove block (block-pred b)))))
(setf (block-succ block) ())
(link-blocks block new-block)
(add-to-dfo new-block block)
(setf (component-reanalyze (block-component block)) t)
(do ((ctran start (node-next (ctran-next ctran))))
((not ctran))
(setf (ctran-block ctran) new-block))
(setf (block-type-asserted block) t)
(setf (block-test-modified block) t))))
(values))
;;;; deleting stuff
;;; Deal with deleting the last (read) reference to a LAMBDA-VAR.
(defun delete-lambda-var (leaf)
(declare (type lambda-var leaf))
(setf (lambda-var-deleted leaf) t)
;; Iterate over all local calls flushing the corresponding argument,
;; allowing the computation of the argument to be deleted. We also
;; mark the LET for reoptimization, since it may be that we have
;; deleted its last variable.
(let* ((fun (lambda-var-home leaf))
(n (position leaf (lambda-vars fun))))
(dolist (ref (leaf-refs fun))
(let* ((lvar (node-lvar ref))
(dest (and lvar (lvar-dest lvar))))
(when (and (combination-p dest)
(eq (basic-combination-fun dest) lvar)
(eq (basic-combination-kind dest) :local))
(let* ((args (basic-combination-args dest))
(arg (elt args n)))
(reoptimize-lvar arg)
(flush-dest arg)
(setf (elt args n) nil))))))
;; The LAMBDA-VAR may still have some SETs, but this doesn't cause
;; too much difficulty, since we can efficiently implement
;; write-only variables. We iterate over the SETs, marking their
;; blocks for dead code flushing, since we can delete SETs whose
;; value is unused.
(dolist (set (lambda-var-sets leaf))
(setf (block-flush-p (node-block set)) t))
(values))
;;; Note that something interesting has happened to VAR.
(defun reoptimize-lambda-var (var)
(declare (type lambda-var var))
(let ((fun (lambda-var-home var)))
;; We only deal with LET variables, marking the corresponding
;; initial value arg as needing to be reoptimized.
(when (and (eq (functional-kind fun) :let)
(leaf-refs var))
(do ((args (basic-combination-args
(lvar-dest (node-lvar (first (leaf-refs fun)))))
(cdr args))
(vars (lambda-vars fun) (cdr vars)))
((eq (car vars) var)
(reoptimize-lvar (car args))))))
(values))
;;; Delete a function that has no references. This need only be called
;;; on functions that never had any references, since otherwise
;;; DELETE-REF will handle the deletion.
(defun delete-functional (fun)
(aver (and (null (leaf-refs fun))
(not (functional-entry-fun fun))))
(etypecase fun
(optional-dispatch (delete-optional-dispatch fun))
(clambda (delete-lambda fun)))
(values))
;;; Deal with deleting the last reference to a CLAMBDA, which means
;;; that the lambda is unreachable, so that its body may be
;;; deleted. We set FUNCTIONAL-KIND to :DELETED and rely on
;;; IR1-OPTIMIZE to delete its blocks.
(defun delete-lambda (clambda)
(declare (type clambda clambda))
(let ((original-kind (functional-kind clambda))
(bind (lambda-bind clambda)))
(aver (not (member original-kind '(:deleted :toplevel))))
(aver (not (functional-has-external-references-p clambda)))
(aver (or (eq original-kind :zombie) bind))
(setf (functional-kind clambda) :deleted)
(setf (lambda-bind clambda) nil)
(labels ((delete-children (lambda)
(dolist (child (lambda-children lambda))
(cond ((eq (functional-kind child) :deleted)
(delete-children child))
(t
(delete-lambda child))))
(setf (lambda-children lambda) nil)
(setf (lambda-parent lambda) nil)))
(delete-children clambda))
;; (The IF test is (FUNCTIONAL-SOMEWHAT-LETLIKE-P CLAMBDA), except
;; that we're using the old value of the KIND slot, not the
;; current slot value, which has now been set to :DELETED.)
(case original-kind
(:zombie)
((:let :mv-let :assignment)
(let ((bind-block (node-block bind)))
(mark-for-deletion bind-block))
(let ((home (lambda-home clambda)))
(setf (lambda-lets home) (delete clambda (lambda-lets home))))
;; KLUDGE: In presence of NLEs we cannot always understand that
;; LET's BIND dominates its body [for a LET "its" body is not
;; quite its]; let's delete too dangerous for IR2 stuff. --
;; APD, 2004-01-01
(dolist (var (lambda-vars clambda))
(flet ((delete-node (node)
(mark-for-deletion (node-block node))))
(mapc #'delete-node (leaf-refs var))
(mapc #'delete-node (lambda-var-sets var)))))
(t
;; Function has no reachable references.
(dolist (ref (lambda-refs clambda))
(mark-for-deletion (node-block ref)))
;; If the function isn't a LET, we unlink the function head
;; and tail from the component head and tail to indicate that
;; the code is unreachable. We also delete the function from
;; COMPONENT-LAMBDAS (it won't be there before local call
;; analysis, but no matter.) If the lambda was never
;; referenced, we give a note.
(let* ((bind-block (node-block bind))
(component (block-component bind-block))
(return (lambda-return clambda))
(return-block (and return (node-block return))))
(unless (leaf-ever-used clambda)
(let ((*compiler-error-context* bind))
(compiler-notify 'code-deletion-note
:format-control "deleting unused function~:[.~;~:*~% ~S~]"
:format-arguments (list (leaf-debug-name clambda)))))
(unless (block-delete-p bind-block)
(unlink-blocks (component-head component) bind-block))
(when (and return-block (not (block-delete-p return-block)))
(mark-for-deletion return-block)
(unlink-blocks return-block (component-tail component)))
(setf (component-reanalyze component) t)
(let ((tails (lambda-tail-set clambda)))
(setf (tail-set-funs tails)
(delete clambda (tail-set-funs tails)))
(setf (lambda-tail-set clambda) nil))
(setf (component-lambdas component)
(delq clambda (component-lambdas component))))))
;; If the lambda is an XEP, then we null out the ENTRY-FUN in its
;; ENTRY-FUN so that people will know that it is not an entry
;; point anymore.
(when (eq original-kind :external)
(let ((fun (functional-entry-fun clambda)))
(setf (functional-entry-fun fun) nil)
(when (optional-dispatch-p fun)
(delete-optional-dispatch fun)))))
(values))
;;; Deal with deleting the last reference to an OPTIONAL-DISPATCH. We
;;; have to be a bit more careful than with lambdas, since DELETE-REF
;;; is used both before and after local call analysis. Afterward, all
;;; references to still-existing OPTIONAL-DISPATCHes have been moved
;;; to the XEP, leaving it with no references at all. So we look at
;;; the XEP to see whether an optional-dispatch is still really being
;;; used. But before local call analysis, there are no XEPs, and all
;;; references are direct.
;;;
;;; When we do delete the OPTIONAL-DISPATCH, we grovel all of its
;;; entry-points, making them be normal lambdas, and then deleting the
;;; ones with no references. This deletes any e-p lambdas that were
;;; either never referenced, or couldn't be deleted when the last
;;; reference was deleted (due to their :OPTIONAL kind.)
;;;
;;; Note that the last optional entry point may alias the main entry,
;;; so when we process the main entry, its KIND may have been changed
;;; to NIL or even converted to a LETlike value.
(defun delete-optional-dispatch (leaf)
(declare (type optional-dispatch leaf))
(let ((entry (functional-entry-fun leaf)))
(unless (and entry (leaf-refs entry))
(aver (or (not entry) (eq (functional-kind entry) :deleted)))
(setf (functional-kind leaf) :deleted)
(flet ((frob (fun)
(unless (eq (functional-kind fun) :deleted)
(aver (eq (functional-kind fun) :optional))
(setf (functional-kind fun) nil)
(let ((refs (leaf-refs fun)))
(cond ((null refs)
(delete-lambda fun))
((null (rest refs))
(or (maybe-let-convert fun)
(maybe-convert-to-assignment fun)))
(t
(maybe-convert-to-assignment fun)))))))
(dolist (ep (optional-dispatch-entry-points leaf))
(when (promise-ready-p ep)
(frob (force ep))))
(when (optional-dispatch-more-entry leaf)
(frob (optional-dispatch-more-entry leaf)))
(let ((main (optional-dispatch-main-entry leaf)))
(when entry
(setf (functional-entry-fun entry) main)
(setf (functional-entry-fun main) entry))
(when (eq (functional-kind main) :optional)
(frob main))))))
(values))
(defun note-local-functional (fun)
(declare (type functional fun))
(when (and (leaf-has-source-name-p fun)
(eq (leaf-source-name fun) (functional-debug-name fun)))
(let ((name (leaf-source-name fun)))
(let ((defined-fun (gethash name *free-funs*)))
(when (and defined-fun
(defined-fun-p defined-fun)
(eq (defined-fun-functional defined-fun) fun))
(remhash name *free-funs*))))))
;;; Return functional for DEFINED-FUN which has been converted in policy
;;; corresponding to the current one, or NIL if no such functional exists.
;;;
;;; Also check that the parent of the functional is visible in the current
;;; environment.
(defun defined-fun-functional (defined-fun)
(let ((functionals (defined-fun-functionals defined-fun)))
(when functionals
(let* ((sample (car functionals))
(there (lambda-parent (if (lambda-p sample)
sample
(optional-dispatch-main-entry sample)))))
(when there
(labels ((lookup (here)
(unless (eq here there)
(if here
(lookup (lambda-parent here))
;; We looked up all the way up, and didn't find the parent
;; of the functional -- therefore it is nested in a lambda
;; we don't see, so return nil.
(return-from defined-fun-functional nil)))))
(lookup (lexenv-lambda *lexenv*)))))
;; Now find a functional whose policy matches the current one, if we already
;; have one.
(let ((policy (lexenv-%policy *lexenv*)))
(dolist (functional functionals)
(when (equal policy (lexenv-%policy (functional-lexenv functional)))
(return functional)))))))
;;; Do stuff to delete the semantic attachments of a REF node. When
;;; this leaves zero or one reference, we do a type dispatch off of
;;; the leaf to determine if a special action is appropriate.
(defun delete-ref (ref)
(declare (type ref ref))
(let* ((leaf (ref-leaf ref))
(refs (delq ref (leaf-refs leaf))))
(setf (leaf-refs leaf) refs)
(cond ((null refs)
(typecase leaf
(lambda-var
(delete-lambda-var leaf))
(clambda
(ecase (functional-kind leaf)
((nil :let :mv-let :assignment :escape :cleanup)
(aver (null (functional-entry-fun leaf)))
(delete-lambda leaf))
(:external
(unless (functional-has-external-references-p leaf)
(delete-lambda leaf)))
((:deleted :zombie :optional))))
(optional-dispatch
(unless (eq (functional-kind leaf) :deleted)
(delete-optional-dispatch leaf)))))
((null (rest refs))
(typecase leaf
(clambda (or (maybe-let-convert leaf)
(maybe-convert-to-assignment leaf)))
(lambda-var (reoptimize-lambda-var leaf))))
(t
(typecase leaf
(clambda (maybe-convert-to-assignment leaf))))))
(values))
;;; This function is called by people who delete nodes; it provides a
;;; way to indicate that the value of a lvar is no longer used. We
;;; null out the LVAR-DEST, set FLUSH-P in the blocks containing uses
;;; of LVAR and set COMPONENT-REOPTIMIZE.
(defun flush-dest (lvar)
(declare (type (or lvar null) lvar))
(unless (null lvar)
(when (lvar-dynamic-extent lvar)
(note-no-stack-allocation lvar :flush t))
(setf (lvar-dest lvar) nil)
(flush-lvar-externally-checkable-type lvar)
(do-uses (use lvar)
(let ((prev (node-prev use)))
(let ((block (ctran-block prev)))
(reoptimize-component (block-component block) t)
(setf (block-attributep (block-flags block)
flush-p type-asserted type-check)
t)))
(setf (node-lvar use) nil))
(setf (lvar-uses lvar) nil))
(values))
(defun delete-dest (lvar)
(when lvar
(let* ((dest (lvar-dest lvar))
(prev (node-prev dest)))
(let ((block (ctran-block prev)))
(unless (block-delete-p block)
(mark-for-deletion block))))))
;;; Queue the block for deletion
(defun delete-block-lazily (block)
(declare (type cblock block))
(unless (block-delete-p block)
(setf (block-delete-p block) t)
(push block (component-delete-blocks (block-component block)))))
;;; Do a graph walk backward from BLOCK, marking all predecessor
;;; blocks with the DELETE-P flag.
(defun mark-for-deletion (block)
(declare (type cblock block))
(let* ((component (block-component block))
(head (component-head component)))
(labels ((helper (block)
(delete-block-lazily block)
(dolist (pred (block-pred block))
(unless (or (block-delete-p pred)
(eq pred head))
(helper pred)))))
(unless (block-delete-p block)
(helper block)
(setf (component-reanalyze component) t))))
(values))
;;; This function does what is necessary to eliminate the code in it
;;; from the IR1 representation. This involves unlinking it from its
;;; predecessors and successors and deleting various node-specific
;;; semantic information. BLOCK must be already removed from
;;; COMPONENT-DELETE-BLOCKS.
(defun delete-block (block &optional silent)
(declare (type cblock block))
(aver (block-component block)) ; else block is already deleted!
#!+high-security (aver (not (memq block (component-delete-blocks (block-component block)))))
(unless silent
(note-block-deletion block))
(setf (block-delete-p block) t)
(dolist (b (block-pred block))
(unlink-blocks b block)
;; In bug 147 the almost-all-blocks-have-a-successor invariant was
;; broken when successors were deleted without setting the
;; BLOCK-DELETE-P flags of their predececessors. Make sure that
;; doesn't happen again.
(aver (not (and (null (block-succ b))
(not (block-delete-p b))
(not (eq b (component-head (block-component b))))))))
(dolist (b (block-succ block))
(unlink-blocks block b))
(do-nodes-carefully (node block)
(when (valued-node-p node)
(delete-lvar-use node))
(etypecase node
(ref (delete-ref node))
(cif (flush-dest (if-test node)))
;; The next two cases serve to maintain the invariant that a LET
;; always has a well-formed COMBINATION, REF and BIND. We delete
;; the lambda whenever we delete any of these, but we must be
;; careful that this LET has not already been partially deleted.
(basic-combination
(when (and (eq (basic-combination-kind node) :local)
;; Guards COMBINATION-LAMBDA agains the REF being deleted.
(lvar-uses (basic-combination-fun node)))
(let ((fun (combination-lambda node)))
;; If our REF was the second-to-last ref, and has been
;; deleted, then FUN may be a LET for some other
;; combination.
(when (and (functional-letlike-p fun)
(eq (let-combination fun) node))
(delete-lambda fun))))
(flush-dest (basic-combination-fun node))
(dolist (arg (basic-combination-args node))
(when arg (flush-dest arg))))
(bind
(let ((lambda (bind-lambda node)))
(unless (eq (functional-kind lambda) :deleted)
(delete-lambda lambda))))
(exit
(let ((value (exit-value node))
(entry (exit-entry node)))
(when value
(flush-dest value))
(when entry
(setf (entry-exits entry)
(delq node (entry-exits entry))))))
(entry
(dolist (exit (entry-exits node))
(mark-for-deletion (node-block exit)))
(let ((home (node-home-lambda node)))
(setf (lambda-entries home) (delq node (lambda-entries home)))))
(creturn
(flush-dest (return-result node))
(delete-return node))
(cset
(flush-dest (set-value node))
(let ((var (set-var node)))
(setf (basic-var-sets var)
(delete node (basic-var-sets var)))))
(cast
(flush-dest (cast-value node)))))
(remove-from-dfo block)
(values))
;;; Do stuff to indicate that the return node NODE is being deleted.
(defun delete-return (node)
(declare (type creturn node))
(let* ((fun (return-lambda node))
(tail-set (lambda-tail-set fun)))
(aver (lambda-return fun))
(setf (lambda-return fun) nil)
(when (and tail-set (not (find-if #'lambda-return
(tail-set-funs tail-set))))
(setf (tail-set-type tail-set) *empty-type*)))
(values))
;;; If any of the VARS in FUN was never referenced and was not
;;; declared IGNORE, then complain.
(defun note-unreferenced-vars (fun)
(declare (type clambda fun))
(dolist (var (lambda-vars fun))
(unless (or (leaf-ever-used var)
(lambda-var-ignorep var))
(let ((*compiler-error-context* (lambda-bind fun)))
(unless (policy *compiler-error-context* (= inhibit-warnings 3))
;; ANSI section "3.2.5 Exceptional Situations in the Compiler"
;; requires this to be no more than a STYLE-WARNING.
#-sb-xc-host
(compiler-style-warn "The variable ~S is defined but never used."
(leaf-debug-name var))
;; There's no reason to accept this kind of equivocation
;; when compiling our own code, though.
#+sb-xc-host
(warn "The variable ~S is defined but never used."
(leaf-debug-name var)))
(setf (leaf-ever-used var) t)))) ; to avoid repeated warnings? -- WHN
(values))
(defvar *deletion-ignored-objects* '(t nil))
;;; Return true if we can find OBJ in FORM, NIL otherwise. We bound
;;; our recursion so that we don't get lost in circular structures. We
;;; ignore the car of forms if they are a symbol (to prevent confusing
;;; function referencess with variables), and we also ignore anything
;;; inside ' or #'.
(defun present-in-form (obj form depth)
(declare (type (integer 0 20) depth))
(cond ((= depth 20) nil)
((eq obj form) t)
((atom form) nil)
(t
(let ((first (car form))
(depth (1+ depth)))
(if (member first '(quote function))
nil
(or (and (not (symbolp first))
(present-in-form obj first depth))
(do ((l (cdr form) (cdr l))
(n 0 (1+ n)))
((or (atom l) (> n 100))
nil)
(declare (fixnum n))
(when (present-in-form obj (car l) depth)
(return t)))))))))
;;; This function is called on a block immediately before we delete
;;; it. We check to see whether any of the code about to die appeared
;;; in the original source, and emit a note if so.
;;;
;;; If the block was in a lambda is now deleted, then we ignore the
;;; whole block, since this case is picked off in DELETE-LAMBDA. We
;;; also ignore the deletion of CRETURN nodes, since it is somewhat
;;; reasonable for a function to not return, and there is a different
;;; note for that case anyway.
;;;
;;; If the actual source is an atom, then we use a bunch of heuristics
;;; to guess whether this reference really appeared in the original
;;; source:
;;; -- If a symbol, it must be interned and not a keyword.
;;; -- It must not be an easily introduced constant (T or NIL, a fixnum
;;; or a character.)
;;; -- The atom must be "present" in the original source form, and
;;; present in all intervening actual source forms.
(defun note-block-deletion (block)
(let ((home (block-home-lambda block)))
(unless (eq (functional-kind home) :deleted)
(do-nodes (node nil block)
(let* ((path (node-source-path node))
(first (first path)))
(when (or (eq first 'original-source-start)
(and (atom first)
(or (not (symbolp first))
(let ((pkg (symbol-package first)))
(and pkg
(not (eq pkg (symbol-package :end))))))
(not (member first *deletion-ignored-objects*))
(not (typep first '(or fixnum character)))
(every (lambda (x)
(present-in-form first x 0))
(source-path-forms path))
(present-in-form first (find-original-source path)
0)))
(unless (return-p node)
(let ((*compiler-error-context* node))
(compiler-notify 'code-deletion-note
:format-control "deleting unreachable code"
:format-arguments nil)))
(return))))))
(values))
;;; Delete a node from a block, deleting the block if there are no
;;; nodes left. We remove the node from the uses of its LVAR.
;;;
;;; If the node is the last node, there must be exactly one successor.
;;; We link all of our precedessors to the successor and unlink the
;;; block. In this case, we return T, otherwise NIL. If no nodes are
;;; left, and the block is a successor of itself, then we replace the
;;; only node with a degenerate exit node. This provides a way to
;;; represent the bodyless infinite loop, given the prohibition on
;;; empty blocks in IR1.
(defun unlink-node (node)
(declare (type node node))
(when (valued-node-p node)
(delete-lvar-use node))
(let* ((ctran (node-next node))
(next (and ctran (ctran-next ctran)))
(prev (node-prev node))
(block (ctran-block prev))
(prev-kind (ctran-kind prev))
(last (block-last block)))
(setf (block-type-asserted block) t)
(setf (block-test-modified block) t)
(cond ((or (eq prev-kind :inside-block)
(and (eq prev-kind :block-start)
(not (eq node last))))
(cond ((eq node last)
(setf (block-last block) (ctran-use prev))
(setf (node-next (ctran-use prev)) nil))
(t
(setf (ctran-next prev) next)
(setf (node-prev next) prev)
(when (if-p next) ; AOP wanted
(reoptimize-lvar (if-test next)))))
(setf (node-prev node) nil)
nil)
(t
(aver (eq prev-kind :block-start))
(aver (eq node last))
(let* ((succ (block-succ block))
(next (first succ)))
(aver (singleton-p succ))
(cond
((eq block (first succ))
(with-ir1-environment-from-node node
(let ((exit (make-exit)))
(setf (ctran-next prev) nil)
(link-node-to-previous-ctran exit prev)
(setf (block-last block) exit)))
(setf (node-prev node) nil)
nil)
(t
(aver (eq (block-start-cleanup block)
(block-end-cleanup block)))
(unlink-blocks block next)
(dolist (pred (block-pred block))
(change-block-successor pred block next))
(when (block-delete-p block)
(let ((component (block-component block)))
(setf (component-delete-blocks component)
(delq block (component-delete-blocks component)))))
(remove-from-dfo block)
(setf (block-delete-p block) t)
(setf (node-prev node) nil)
t)))))))
;;; Return true if CTRAN has been deleted, false if it is still a valid
;;; part of IR1.
(defun ctran-deleted-p (ctran)
(declare (type ctran ctran))
(let ((block (ctran-block ctran)))
(or (not (block-component block))
(block-delete-p block))))
;;; Return true if NODE has been deleted, false if it is still a valid
;;; part of IR1.
(defun node-deleted (node)
(declare (type node node))
(let ((prev (node-prev node)))
(or (not prev)
(ctran-deleted-p prev))))
;;; Delete all the blocks and functions in COMPONENT. We scan first
;;; marking the blocks as DELETE-P to prevent weird stuff from being
;;; triggered by deletion.
(defun delete-component (component)
(declare (type component component))
(aver (null (component-new-functionals component)))
(setf (component-kind component) :deleted)
(do-blocks (block component)
(delete-block-lazily block))
(dolist (fun (component-lambdas component))
(unless (eq (functional-kind fun) :deleted)
(setf (functional-kind fun) nil)
(setf (functional-entry-fun fun) nil)
(setf (leaf-refs fun) nil)
(delete-functional fun)))
(clean-component component)
(values))
;;; Remove all pending blocks to be deleted. Return the nearest live
;;; block after or equal to BLOCK.
(defun clean-component (component &optional block)
(loop while (component-delete-blocks component)
;; actual deletion of a block may queue new blocks
do (let ((current (pop (component-delete-blocks component))))
(when (eq block current)
(setq block (block-next block)))
(delete-block current)))
block)
;;; Convert code of the form
;;; (FOO ... (FUN ...) ...)
;;; to
;;; (FOO ... ... ...).
;;; In other words, replace the function combination FUN by its
;;; arguments. If there are any problems with doing this, use GIVE-UP
;;; to blow out of whatever transform called this. Note, as the number
;;; of arguments changes, the transform must be prepared to return a
;;; lambda with a new lambda-list with the correct number of
;;; arguments.
(defun splice-fun-args (lvar fun num-args)
#!+sb-doc
"If LVAR is a call to FUN with NUM-ARGS args, change those arguments to feed
directly to the LVAR-DEST of LVAR, which must be a combination. If FUN
is :ANY, the function name is not checked."
(declare (type lvar lvar)
(type symbol fun)
(type index num-args))
(let ((outside (lvar-dest lvar))
(inside (lvar-uses lvar)))
(aver (combination-p outside))
(unless (combination-p inside)
(give-up-ir1-transform))
(let ((inside-fun (combination-fun inside)))
(unless (or (eq fun :any)
(eq (lvar-fun-name inside-fun) fun))
(give-up-ir1-transform))
(let ((inside-args (combination-args inside)))
(unless (= (length inside-args) num-args)
(give-up-ir1-transform))
(let* ((outside-args (combination-args outside))
(arg-position (position lvar outside-args))
(before-args (subseq outside-args 0 arg-position))
(after-args (subseq outside-args (1+ arg-position))))
(dolist (arg inside-args)
(setf (lvar-dest arg) outside)
(flush-lvar-externally-checkable-type arg))
(setf (combination-args inside) nil)
(setf (combination-args outside)
(append before-args inside-args after-args))
(change-ref-leaf (lvar-uses inside-fun)
(find-free-fun 'list "???"))
(setf (combination-fun-info inside) (info :function :info 'list)
(combination-kind inside) :known)
(setf (node-derived-type inside) *wild-type*)
(flush-dest lvar)
inside-args)))))
;;; Eliminate keyword arguments from the call (leaving the
;;; parameters in place.
;;;
;;; (FOO ... :BAR X :QUUX Y)
;;; becomes
;;; (FOO ... X Y)
;;;
;;; SPECS is a list of (:KEYWORD PARAMETER) specifications.
;;; Returns the list of specified parameters names in the
;;; order they appeared in the call. N-POSITIONAL is the
;;; number of positional arguments in th call.
(defun eliminate-keyword-args (call n-positional specs)
(let* ((specs (copy-tree specs))
(all (combination-args call))
(new-args (reverse (subseq all 0 n-positional)))
(key-args (subseq all n-positional))
(parameters nil)
(flushed-keys nil))
(loop while key-args
do (let* ((key (pop key-args))
(val (pop key-args))
(keyword (if (constant-lvar-p key)
(lvar-value key)
(give-up-ir1-transform)))
(spec (or (assoc keyword specs :test #'eq)
(give-up-ir1-transform))))
(push val new-args)
(push key flushed-keys)
(push (second spec) parameters)
;; In case of duplicate keys.
(setf (second spec) (gensym))))
(dolist (key flushed-keys)
(flush-dest key))
(setf (combination-args call) (reverse new-args))
(reverse parameters)))
(defun extract-fun-args (lvar fun num-args)
(declare (type lvar lvar)
(type (or symbol list) fun)
(type index num-args))
(let ((fun (if (listp fun) fun (list fun))))
(let ((inside (lvar-uses lvar)))
(unless (combination-p inside)
(give-up-ir1-transform))
(let ((inside-fun (combination-fun inside)))
(unless (member (lvar-fun-name inside-fun) fun)
(give-up-ir1-transform))
(let ((inside-args (combination-args inside)))
(unless (= (length inside-args) num-args)
(give-up-ir1-transform))
(values (lvar-fun-name inside-fun) inside-args))))))
(defun flush-combination (combination)
(declare (type combination combination))
(flush-dest (combination-fun combination))
(dolist (arg (combination-args combination))
(flush-dest arg))
(unlink-node combination)
(values))
;;;; leaf hackery
;;; Change the LEAF that a REF refers to.
(defun change-ref-leaf (ref leaf)
(declare (type ref ref) (type leaf leaf))
(unless (eq (ref-leaf ref) leaf)
(push ref (leaf-refs leaf))
(delete-ref ref)
(setf (ref-leaf ref) leaf)
(setf (leaf-ever-used leaf) t)
(let* ((ltype (leaf-type leaf))
(vltype (make-single-value-type ltype)))
(if (let* ((lvar (node-lvar ref))
(dest (and lvar (lvar-dest lvar))))
(and (basic-combination-p dest)
(eq lvar (basic-combination-fun dest))
(csubtypep ltype (specifier-type 'function))))
(setf (node-derived-type ref) vltype)
(derive-node-type ref vltype)))
(reoptimize-lvar (node-lvar ref)))
(values))
;;; Change all REFS for OLD-LEAF to NEW-LEAF.
(defun substitute-leaf (new-leaf old-leaf)
(declare (type leaf new-leaf old-leaf))
(dolist (ref (leaf-refs old-leaf))
(change-ref-leaf ref new-leaf))
(values))
;;; like SUBSITUTE-LEAF, only there is a predicate on the REF to tell
;;; whether to substitute
(defun substitute-leaf-if (test new-leaf old-leaf)
(declare (type leaf new-leaf old-leaf) (type function test))
(dolist (ref (leaf-refs old-leaf))
(when (funcall test ref)
(change-ref-leaf ref new-leaf)))
(values))
;;; Return a LEAF which represents the specified constant object. If
;;; the object is not in *CONSTANTS*, then we create a new constant
;;; LEAF and enter it. If we are producing a fasl file, make sure that
;;; MAKE-LOAD-FORM gets used on any parts of the constant that it
;;; needs to be.
;;;
;;; We are allowed to coalesce things like EQUAL strings and bit-vectors
;;; when file-compiling, but not when using COMPILE.
(defun find-constant (object &optional (name nil namep))
(let ((faslp (producing-fasl-file)))
(labels ((make-it ()
(when faslp
(if namep
(maybe-emit-make-load-forms object name)
(maybe-emit-make-load-forms object)))
(make-constant object))
(core-coalesce-p (x)
;; True for things which retain their identity under EQUAL,
;; so we can safely share the same CONSTANT leaf between
;; multiple references.
(or (typep x '(or symbol number character))
;; Amusingly enough, we see CLAMBDAs --among other things--
;; here, from compiling things like %ALLOCATE-CLOSUREs forms.
;; No point in stuffing them in the hash-table.
(and (typep x 'instance)
(not (or (leaf-p x) (node-p x))))))
(file-coalesce-p (x)
;; CLHS 3.2.4.2.2: We are also allowed to coalesce various
;; other things when file-compiling.
(or (core-coalesce-p x)
(if (consp x)
(if (eq +code-coverage-unmarked+ (cdr x))
;; These are already coalesced, and the CAR should
;; always be OK, so no need to check.
t
(unless (maybe-cyclic-p x) ; safe for EQUAL?
(do ((y x (cdr y)))
((atom y) (file-coalesce-p y))
(unless (file-coalesce-p (car y))
(return nil)))))
;; We *could* coalesce base-strings as well,
;; but we'd need a separate hash-table for
;; that, since we are not allowed to coalesce
;; base-strings with non-base-strings.
(typep x
'(or bit-vector
;; in the cross-compiler, we coalesce
;; all strings with the same contents,
;; because we will end up dumping them
;; as base-strings anyway. In the
;; real compiler, we're not allowed to
;; coalesce regardless of string
;; specialized element type, so we
;; KLUDGE by coalescing only character
;; strings (the common case) and
;; punting on the other types.
#+sb-xc-host
string
#-sb-xc-host
(vector character))))))
(coalescep (x)
(if faslp (file-coalesce-p x) (core-coalesce-p x))))
(if (and (boundp '*constants*) (coalescep object))
(or (gethash object *constants*)
(setf (gethash object *constants*)
(make-it)))
(make-it)))))
;;; Return true if VAR would have to be closed over if environment
;;; analysis ran now (i.e. if there are any uses that have a different
;;; home lambda than VAR's home.)
(defun closure-var-p (var)
(declare (type lambda-var var))
(let ((home (lambda-var-home var)))
(cond ((eq (functional-kind home) :deleted)
nil)
(t (let ((home (lambda-home home)))
(flet ((frob (l)
(find home l
:key #'node-home-lambda
:test #'neq)))
(or (frob (leaf-refs var))
(frob (basic-var-sets var)))))))))
;;; If there is a non-local exit noted in ENTRY's environment that
;;; exits to CONT in that entry, then return it, otherwise return NIL.
(defun find-nlx-info (exit)
(declare (type exit exit))
(let* ((entry (exit-entry exit))
(cleanup (entry-cleanup entry))
(block (first (block-succ (node-block exit)))))
(dolist (nlx (physenv-nlx-info (node-physenv entry)) nil)
(when (and (eq (nlx-info-block nlx) block)
(eq (nlx-info-cleanup nlx) cleanup))
(return nlx)))))
(defun nlx-info-lvar (nlx)
(declare (type nlx-info nlx))
(node-lvar (block-last (nlx-info-target nlx))))
;;;; functional hackery
(declaim (ftype (sfunction (functional) clambda) main-entry))
(defun main-entry (functional)
(etypecase functional
(clambda functional)
(optional-dispatch
(optional-dispatch-main-entry functional))))
;;; RETURN true if FUNCTIONAL is a thing that can be treated like
;;; MV-BIND when it appears in an MV-CALL. All fixed arguments must be
;;; optional with null default and no SUPPLIED-P. There must be a
;;; &REST arg with no references.
(declaim (ftype (sfunction (functional) boolean) looks-like-an-mv-bind))
(defun looks-like-an-mv-bind (functional)
(and (optional-dispatch-p functional)
(do ((arg (optional-dispatch-arglist functional) (cdr arg)))
((null arg) nil)
(let ((info (lambda-var-arg-info (car arg))))
(unless info (return nil))
(case (arg-info-kind info)
(:optional
(when (or (arg-info-supplied-p info) (arg-info-default info))
(return nil)))
(:rest
(return (and (null (cdr arg)) (null (leaf-refs (car arg))))))
(t
(return nil)))))))
;;; Return true if function is an external entry point. This is true
;;; of normal XEPs (:EXTERNAL kind) and also of top level lambdas
;;; (:TOPLEVEL kind.)
(defun xep-p (fun)
(declare (type functional fun))
(not (null (member (functional-kind fun) '(:external :toplevel)))))
;;; If LVAR's only use is a non-notinline global function reference,
;;; then return the referenced symbol, otherwise NIL. If NOTINLINE-OK
;;; is true, then we don't care if the leaf is NOTINLINE.
(defun lvar-fun-name (lvar &optional notinline-ok)
(declare (type lvar lvar))
(let ((use (lvar-uses lvar)))
(if (ref-p use)
(let ((leaf (ref-leaf use)))
(if (and (global-var-p leaf)
(eq (global-var-kind leaf) :global-function)
(or (not (defined-fun-p leaf))
(not (eq (defined-fun-inlinep leaf) :notinline))
notinline-ok))
(leaf-source-name leaf)
nil))
nil)))
(defun lvar-fun-debug-name (lvar)
(declare (type lvar lvar))
(let ((uses (lvar-uses lvar)))
(flet ((name1 (use)
(leaf-debug-name (ref-leaf use))))
(if (ref-p uses)
(name1 uses)
(mapcar #'name1 uses)))))
;;; Return the source name of a combination -- or signals an error
;;; if the function leaf is anonymous.
(defun combination-fun-source-name (combination &optional (errorp t))
(let ((leaf (ref-leaf (lvar-uses (combination-fun combination)))))
(if (or errorp (leaf-has-source-name-p leaf))
(values (leaf-source-name leaf) t)
(values nil nil))))
;;; Return the COMBINATION node that is the call to the LET FUN.
(defun let-combination (fun)
(declare (type clambda fun))
(aver (functional-letlike-p fun))
(lvar-dest (node-lvar (first (leaf-refs fun)))))
;;; Return the initial value lvar for a LET variable, or NIL if there
;;; is none.
(defun let-var-initial-value (var)
(declare (type lambda-var var))
(let ((fun (lambda-var-home var)))
(elt (combination-args (let-combination fun))
(position-or-lose var (lambda-vars fun)))))
;;; Return the LAMBDA that is called by the local CALL.
(defun combination-lambda (call)
(declare (type basic-combination call))
(aver (eq (basic-combination-kind call) :local))
(ref-leaf (lvar-uses (basic-combination-fun call))))
(defvar *inline-expansion-limit* 200
#!+sb-doc
"an upper limit on the number of inline function calls that will be expanded
in any given code object (single function or block compilation)")
;;; Check whether NODE's component has exceeded its inline expansion
;;; limit, and warn if so, returning NIL.
(defun inline-expansion-ok (node)
(let ((expanded (incf (component-inline-expansions
(block-component
(node-block node))))))
(cond ((> expanded *inline-expansion-limit*) nil)
((= expanded *inline-expansion-limit*)
;; FIXME: If the objective is to stop the recursive
;; expansion of inline functions, wouldn't it be more
;; correct to look back through surrounding expansions
;; (which are, I think, stored in the *CURRENT-PATH*, and
;; possibly stored elsewhere too) and suppress expansion
;; and print this warning when the function being proposed
;; for inline expansion is found there? (I don't like the
;; arbitrary numerical limit in principle, and I think
;; it'll be a nuisance in practice if we ever want the
;; compiler to be able to use WITH-COMPILATION-UNIT on
;; arbitrarily huge blocks of code. -- WHN)
(let ((*compiler-error-context* node))
(compiler-notify "*INLINE-EXPANSION-LIMIT* (~W) was exceeded, ~
probably trying to~% ~
inline a recursive function."
*inline-expansion-limit*))
nil)
(t t))))
;;; Make sure that FUNCTIONAL is not let-converted or deleted.
(defun assure-functional-live-p (functional)
(declare (type functional functional))
(when (and (or
;; looks LET-converted
(functional-somewhat-letlike-p functional)
;; It's possible for a LET-converted function to end up
;; deleted later. In that case, for the purposes of this
;; analysis, it is LET-converted: LET-converted functionals
;; are too badly trashed to expand them inline, and deleted
;; LET-converted functionals are even worse.
(memq (functional-kind functional) '(:deleted :zombie))))
(throw 'locall-already-let-converted functional)))
(defun assure-leaf-live-p (leaf)
(typecase leaf
(lambda-var
(when (lambda-var-deleted leaf)
(throw 'locall-already-let-converted leaf)))
(functional
(assure-functional-live-p leaf))))
(defun call-full-like-p (call)
(declare (type combination call))
(let ((kind (basic-combination-kind call)))
(or (eq kind :full)
(and (eq kind :known)
(let ((info (basic-combination-fun-info call)))
(and
(not (fun-info-ir2-convert info))
(dolist (template (fun-info-templates info) t)
(when (eq (template-ltn-policy template) :fast-safe)
(multiple-value-bind (val win)
(valid-fun-use call (template-type template))
(when (or val (not win)) (return nil)))))))))))
;;;; careful call
;;; Apply a function to some arguments, returning a list of the values
;;; resulting of the evaluation. If an error is signalled during the
;;; application, then we produce a warning message using WARN-FUN and
;;; return NIL as our second value to indicate this. NODE is used as
;;; the error context for any error message, and CONTEXT is a string
;;; that is spliced into the warning.
(declaim (ftype (sfunction ((or symbol function) list node function string)
(values list boolean))
careful-call))
(defun careful-call (function args node warn-fun context)
(values
(multiple-value-list
(handler-case (apply function args)
(error (condition)
(let ((*compiler-error-context* node))
(funcall warn-fun "Lisp error during ~A:~%~A" context condition)
(return-from careful-call (values nil nil))))))
t))
;;; Variations of SPECIFIER-TYPE for parsing possibly wrong
;;; specifiers.
(macrolet
((deffrob (basic careful compiler transform)
`(progn
(defun ,careful (specifier)
(handler-case (,basic specifier)
(sb!kernel::arg-count-error (condition)
(values nil (list (format nil "~A" condition))))
(simple-error (condition)
(values nil (list* (simple-condition-format-control condition)
(simple-condition-format-arguments condition))))))
(defun ,compiler (specifier)
(multiple-value-bind (type error-args) (,careful specifier)
(or type
(apply #'compiler-error error-args))))
(defun ,transform (specifier)
(multiple-value-bind (type error-args) (,careful specifier)
(or type
(apply #'give-up-ir1-transform
error-args)))))))
(deffrob specifier-type careful-specifier-type compiler-specifier-type ir1-transform-specifier-type)
(deffrob values-specifier-type careful-values-specifier-type compiler-values-specifier-type ir1-transform-values-specifier-type))
;;;; utilities used at run-time for parsing &KEY args in IR1
;;; This function is used by the result of PARSE-DEFTRANSFORM to find
;;; the lvar for the value of the &KEY argument KEY in the list of
;;; lvars ARGS. It returns the lvar if the keyword is present, or NIL
;;; otherwise. The legality and constantness of the keywords should
;;; already have been checked.
(declaim (ftype (sfunction (list keyword) (or lvar null))
find-keyword-lvar))
(defun find-keyword-lvar (args key)
(do ((arg args (cddr arg)))
((null arg) nil)
(when (eq (lvar-value (first arg)) key)
(return (second arg)))))
;;; This function is used by the result of PARSE-DEFTRANSFORM to
;;; verify that alternating lvars in ARGS are constant and that there
;;; is an even number of args.
(declaim (ftype (sfunction (list) boolean) check-key-args-constant))
(defun check-key-args-constant (args)
(do ((arg args (cddr arg)))
((null arg) t)
(unless (and (rest arg)
(constant-lvar-p (first arg)))
(return nil))))
;;; This function is used by the result of PARSE-DEFTRANSFORM to
;;; verify that the list of lvars ARGS is a well-formed &KEY arglist
;;; and that only keywords present in the list KEYS are supplied.
(declaim (ftype (sfunction (list list) boolean) check-transform-keys))
(defun check-transform-keys (args keys)
(and (check-key-args-constant args)
(do ((arg args (cddr arg)))
((null arg) t)
(unless (member (lvar-value (first arg)) keys)
(return nil)))))
;;;; miscellaneous
;;; Called by the expansion of the EVENT macro.
(declaim (ftype (sfunction (event-info (or node null)) *) %event))
(defun %event (info node)
(incf (event-info-count info))
(when (and (>= (event-info-level info) *event-note-threshold*)
(policy (or node *lexenv*)
(= inhibit-warnings 0)))
(let ((*compiler-error-context* node))
(compiler-notify (event-info-description info))))
(let ((action (event-info-action info)))
(when action (funcall action node))))
;;;
(defun make-cast (value type policy)
(declare (type lvar value)
(type ctype type)
(type policy policy))
(%make-cast :asserted-type type
:type-to-check (maybe-weaken-check type policy)
:value value
:derived-type (coerce-to-values type)))
(defun cast-type-check (cast)
(declare (type cast cast))
(when (cast-reoptimize cast)
(ir1-optimize-cast cast t))
(cast-%type-check cast))
(defun note-single-valuified-lvar (lvar)
(declare (type (or lvar null) lvar))
(when lvar
(let ((use (lvar-uses lvar)))
(cond ((ref-p use)
(let ((leaf (ref-leaf use)))
(when (and (lambda-var-p leaf)
(null (rest (leaf-refs leaf))))
(reoptimize-lambda-var leaf))))
((or (listp use) (combination-p use))
(do-uses (node lvar)
(setf (node-reoptimize node) t)
(setf (block-reoptimize (node-block node)) t)
(reoptimize-component (node-component node) :maybe)))))))
;;; Return true if LVAR's only use is a reference to a global function
;;; designator with one of the specified NAMES, that hasn't been
;;; declared NOTINLINE.
(defun lvar-fun-is (lvar names)
(declare (type lvar lvar) (list names))
(let ((use (lvar-uses lvar)))
(and (ref-p use)
(let* ((*lexenv* (node-lexenv use))
(leaf (ref-leaf use))
(name
(cond ((global-var-p leaf)
;; Case 1: #'NAME
(and (eq (global-var-kind leaf) :global-function)
(car (member (leaf-source-name leaf) names
:test #'equal))))
((constant-p leaf)
(let ((value (constant-value leaf)))
(car (if (functionp value)
;; Case 2: #.#'NAME
(member value names
:key (lambda (name)
(and (fboundp name)
(fdefinition name)))
:test #'eq)
;; Case 3: 'NAME
(member value names
:test #'equal))))))))
(and name
(not (fun-lexically-notinline-p name)))))))
;;; Return true if LVAR's only use is a call to one of the named functions
;;; (or any function if none are specified) with the specified number of
;;; of arguments (or any number if number is not specified)
(defun lvar-matches (lvar &key fun-names arg-count)
(let ((use (lvar-uses lvar)))
(and (combination-p use)
(or (not fun-names)
(multiple-value-bind (name ok)
(combination-fun-source-name use nil)
(and ok (member name fun-names :test #'eq))))
(or (not arg-count)
(= arg-count (length (combination-args use)))))))