[8c1cdf]: src / compiler / ir1tran.lisp Maximize Restore History

Download this file

ir1tran.lisp    1283 lines (1214 with data), 53.1 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
;;;; This file contains code which does the translation from Lisp code
;;;; to the first intermediate representation (IR1).
;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; This software is derived from the CMU CL system, which was
;;;; written at Carnegie Mellon University and released into the
;;;; public domain. The software is in the public domain and is
;;;; provided with absolutely no warranty. See the COPYING and CREDITS
;;;; files for more information.
(in-package "SB!C")
(declaim (special *compiler-error-bailout*))
;;; *SOURCE-PATHS* is a hashtable from source code forms to the path
;;; taken through the source to reach the form. This provides a way to
;;; keep track of the location of original source forms, even when
;;; macroexpansions and other arbitary permutations of the code
;;; happen. This table is initialized by calling FIND-SOURCE-PATHS on
;;; the original source.
(declaim (hash-table *source-paths*))
(defvar *source-paths*)
;;; *CURRENT-COMPONENT* is the COMPONENT structure which we link
;;; blocks into as we generate them. This just serves to glue the
;;; emitted blocks together until local call analysis and flow graph
;;; canonicalization figure out what is really going on. We need to
;;; keep track of all the blocks generated so that we can delete them
;;; if they turn out to be unreachable.
;;;
;;; FIXME: It's confusing having one variable named *CURRENT-COMPONENT*
;;; and another named *COMPONENT-BEING-COMPILED*. (In CMU CL they
;;; were called *CURRENT-COMPONENT* and *COMPILE-COMPONENT* respectively,
;;; which was also confusing.)
(declaim (type (or component null) *current-component*))
(defvar *current-component*)
;;; *CURRENT-PATH* is the source path of the form we are currently
;;; translating. See NODE-SOURCE-PATH in the NODE structure.
(declaim (list *current-path*))
(defvar *current-path*)
(defvar *derive-function-types* nil
"Should the compiler assume that function types will never change,
so that it can use type information inferred from current definitions
to optimize code which uses those definitions? Setting this true
gives non-ANSI, early-CMU-CL behavior. It can be useful for improving
the efficiency of stable code.")
(defvar *fun-names-in-this-file* nil)
;;;; namespace management utilities
(defun fun-lexically-notinline-p (name)
(let ((fun (lexenv-find name funs :test #'equal)))
;; a declaration will trump a proclamation
(if (and fun (defined-fun-p fun))
(eq (defined-fun-inlinep fun) :notinline)
(eq (info :function :inlinep name) :notinline))))
;;; Return a GLOBAL-VAR structure usable for referencing the global
;;; function NAME.
(defun find-free-really-fun (name)
(unless (info :function :kind name)
(setf (info :function :kind name) :function)
(setf (info :function :where-from name) :assumed))
(let ((where (info :function :where-from name)))
(when (and (eq where :assumed)
;; In the ordinary target Lisp, it's silly to report
;; undefinedness when the function is defined in the
;; running Lisp. But at cross-compile time, the current
;; definedness of a function is irrelevant to the
;; definedness at runtime, which is what matters.
#-sb-xc-host (not (fboundp name)))
(note-undefined-reference name :function))
(make-global-var
:kind :global-function
:%source-name name
:type (if (or *derive-function-types*
(eq where :declared)
(and (member name *fun-names-in-this-file* :test #'equal)
(not (fun-lexically-notinline-p name))))
(info :function :type name)
(specifier-type 'function))
:where-from where)))
;;; Has the *FREE-FUNS* entry FREE-FUN become invalid?
;;;
;;; In CMU CL, the answer was implicitly always true, so this
;;; predicate didn't exist.
;;;
;;; This predicate was added to fix bug 138 in SBCL. In some obscure
;;; circumstances, it was possible for a *FREE-FUNS* entry to contain a
;;; DEFINED-FUN whose DEFINED-FUN-FUNCTIONAL object contained IR1
;;; stuff (NODEs, BLOCKs...) referring to an already compiled (aka
;;; "dead") component. When this IR1 stuff was reused in a new
;;; component, under further obscure circumstances it could be used by
;;; WITH-IR1-ENVIRONMENT-FROM-NODE to generate a binding for
;;; *CURRENT-COMPONENT*. At that point things got all confused, since
;;; IR1 conversion was sending code to a component which had already
;;; been compiled and would never be compiled again.
(defun invalid-free-fun-p (free-fun)
;; There might be other reasons that *FREE-FUN* entries could
;; become invalid, but the only one we've been bitten by so far
;; (sbcl-0.pre7.118) is this one:
(and (defined-fun-p free-fun)
(let ((functional (defined-fun-functional free-fun)))
(or (and functional
(eql (functional-kind functional) :deleted))
(and (lambda-p functional)
(or
;; (The main reason for this first test is to bail
;; out early in cases where the LAMBDA-COMPONENT
;; call in the second test would fail because links
;; it needs are uninitialized or invalid.)
;;
;; If the BIND node for this LAMBDA is null, then
;; according to the slot comments, the LAMBDA has
;; been deleted or its call has been deleted. In
;; that case, it seems rather questionable to reuse
;; it, and certainly it shouldn't be necessary to
;; reuse it, so we cheerfully declare it invalid.
(null (lambda-bind functional))
;; If this IR1 stuff belongs to a dead component,
;; then we can't reuse it without getting into
;; bizarre confusion.
(eql (component-info (lambda-component functional))
:dead)))))))
;;; If NAME already has a valid entry in *FREE-FUNS*, then return
;;; the value. Otherwise, make a new GLOBAL-VAR using information from
;;; the global environment and enter it in *FREE-FUNS*. If NAME
;;; names a macro or special form, then we error out using the
;;; supplied context which indicates what we were trying to do that
;;; demanded a function.
(declaim (ftype (sfunction (t string) global-var) find-free-fun))
(defun find-free-fun (name context)
(or (let ((old-free-fun (gethash name *free-funs*)))
(and (not (invalid-free-fun-p old-free-fun))
old-free-fun))
(ecase (info :function :kind name)
;; FIXME: The :MACRO and :SPECIAL-FORM cases could be merged.
(:macro
(compiler-error "The macro name ~S was found ~A." name context))
(:special-form
(compiler-error "The special form name ~S was found ~A."
name
context))
((:function nil)
(check-fun-name name)
(note-if-setf-fun-and-macro name)
(let ((expansion (fun-name-inline-expansion name))
(inlinep (info :function :inlinep name)))
(setf (gethash name *free-funs*)
(if (or expansion inlinep)
(make-defined-fun
:%source-name name
:inline-expansion expansion
:inlinep inlinep
:where-from (info :function :where-from name)
:type (if (eq inlinep :notinline)
(specifier-type 'function)
(info :function :type name)))
(find-free-really-fun name))))))))
;;; Return the LEAF structure for the lexically apparent function
;;; definition of NAME.
(declaim (ftype (sfunction (t string) leaf) find-lexically-apparent-fun))
(defun find-lexically-apparent-fun (name context)
(let ((var (lexenv-find name funs :test #'equal)))
(cond (var
(unless (leaf-p var)
(aver (and (consp var) (eq (car var) 'macro)))
(compiler-error "found macro name ~S ~A" name context))
var)
(t
(find-free-fun name context)))))
;;; Return the LEAF node for a global variable reference to NAME. If
;;; NAME is already entered in *FREE-VARS*, then we just return the
;;; corresponding value. Otherwise, we make a new leaf using
;;; information from the global environment and enter it in
;;; *FREE-VARS*. If the variable is unknown, then we emit a warning.
(declaim (ftype (sfunction (t) (or leaf cons heap-alien-info)) find-free-var))
(defun find-free-var (name)
(unless (symbolp name)
(compiler-error "Variable name is not a symbol: ~S." name))
(or (gethash name *free-vars*)
(let ((kind (info :variable :kind name))
(type (info :variable :type name))
(where-from (info :variable :where-from name)))
(when (and (eq where-from :assumed) (eq kind :global))
(note-undefined-reference name :variable))
(setf (gethash name *free-vars*)
(case kind
(:alien
(info :variable :alien-info name))
;; FIXME: The return value in this case should really be
;; of type SB!C::LEAF. I don't feel too badly about it,
;; because the MACRO idiom is scattered throughout this
;; file, but it should be cleaned up so we're not
;; throwing random conses around. --njf 2002-03-23
(:macro
(let ((expansion (info :variable :macro-expansion name))
(type (type-specifier (info :variable :type name))))
`(MACRO . (the ,type ,expansion))))
(:constant
(let ((value (info :variable :constant-value name)))
(make-constant :value value
:%source-name name
:type (ctype-of value)
:where-from where-from)))
(t
(make-global-var :kind kind
:%source-name name
:type type
:where-from where-from)))))))
;;; Grovel over CONSTANT checking for any sub-parts that need to be
;;; processed with MAKE-LOAD-FORM. We have to be careful, because
;;; CONSTANT might be circular. We also check that the constant (and
;;; any subparts) are dumpable at all.
(eval-when (:compile-toplevel :load-toplevel :execute)
;; The EVAL-WHEN is necessary for #.(1+ LIST-TO-HASH-TABLE-THRESHOLD)
;; below. -- AL 20010227
(def!constant list-to-hash-table-threshold 32))
(defun maybe-emit-make-load-forms (constant)
(let ((things-processed nil)
(count 0))
;; FIXME: Does this LIST-or-HASH-TABLE messiness give much benefit?
(declare (type (or list hash-table) things-processed)
(type (integer 0 #.(1+ list-to-hash-table-threshold)) count)
(inline member))
(labels ((grovel (value)
;; Unless VALUE is an object which which obviously
;; can't contain other objects
(unless (typep value
'(or #-sb-xc-host unboxed-array
#+sb-xc-host (simple-array (unsigned-byte 8) (*))
symbol
number
character
string))
(etypecase things-processed
(list
(when (member value things-processed :test #'eq)
(return-from grovel nil))
(push value things-processed)
(incf count)
(when (> count list-to-hash-table-threshold)
(let ((things things-processed))
(setf things-processed
(make-hash-table :test 'eq))
(dolist (thing things)
(setf (gethash thing things-processed) t)))))
(hash-table
(when (gethash value things-processed)
(return-from grovel nil))
(setf (gethash value things-processed) t)))
(typecase value
(cons
(grovel (car value))
(grovel (cdr value)))
(simple-vector
(dotimes (i (length value))
(grovel (svref value i))))
((vector t)
(dotimes (i (length value))
(grovel (aref value i))))
((simple-array t)
;; Even though the (ARRAY T) branch does the exact
;; same thing as this branch we do this separately
;; so that the compiler can use faster versions of
;; array-total-size and row-major-aref.
(dotimes (i (array-total-size value))
(grovel (row-major-aref value i))))
((array t)
(dotimes (i (array-total-size value))
(grovel (row-major-aref value i))))
(;; In the target SBCL, we can dump any instance,
;; but in the cross-compilation host,
;; %INSTANCE-FOO functions don't work on general
;; instances, only on STRUCTURE!OBJECTs.
#+sb-xc-host structure!object
#-sb-xc-host instance
(when (emit-make-load-form value)
(dotimes (i (%instance-length value))
(grovel (%instance-ref value i)))))
(t
(compiler-error
"Objects of type ~S can't be dumped into fasl files."
(type-of value)))))))
(grovel constant)))
(values))
;;;; some flow-graph hacking utilities
;;; This function sets up the back link between the node and the
;;; ctran which continues at it.
(defun link-node-to-previous-ctran (node ctran)
(declare (type node node) (type ctran ctran))
(aver (not (ctran-next ctran)))
(setf (ctran-next ctran) node)
(setf (node-prev node) ctran))
;;; This function is used to set the ctran for a node, and thus
;;; determine what is evaluated next. If the ctran has no block, then
;;; we make it be in the block that the node is in. If the ctran heads
;;; its block, we end our block and link it to that block.
#!-sb-fluid (declaim (inline use-ctran))
(defun use-ctran (node ctran)
(declare (type node node) (type ctran ctran))
(if (eq (ctran-kind ctran) :unused)
(let ((node-block (ctran-block (node-prev node))))
(setf (ctran-block ctran) node-block)
(setf (ctran-kind ctran) :inside-block)
(setf (ctran-use ctran) node)
(setf (node-next node) ctran))
(%use-ctran node ctran)))
(defun %use-ctran (node ctran)
(declare (type node node) (type ctran ctran) (inline member))
(let ((block (ctran-block ctran))
(node-block (ctran-block (node-prev node))))
(aver (eq (ctran-kind ctran) :block-start))
(when (block-last node-block)
(error "~S has already ended." node-block))
(setf (block-last node-block) node)
(when (block-succ node-block)
(error "~S already has successors." node-block))
(setf (block-succ node-block) (list block))
(when (memq node-block (block-pred block))
(error "~S is already a predecessor of ~S." node-block block))
(push node-block (block-pred block))))
;;; This function is used to set the ctran for a node, and thus
;;; determine what receives the value.
(defun use-lvar (node lvar)
(declare (type valued-node node) (type (or lvar null) lvar))
(aver (not (node-lvar node)))
(when lvar
(setf (node-lvar node) lvar)
(cond ((null (lvar-uses lvar))
(setf (lvar-uses lvar) node))
((listp (lvar-uses lvar))
(aver (not (memq node (lvar-uses lvar))))
(push node (lvar-uses lvar)))
(t
(aver (neq node (lvar-uses lvar)))
(setf (lvar-uses lvar) (list node (lvar-uses lvar)))))
(reoptimize-lvar lvar)))
#!-sb-fluid(declaim (inline use-continuation))
(defun use-continuation (node ctran lvar)
(use-ctran node ctran)
(use-lvar node lvar))
;;;; exported functions
;;; This function takes a form and the top level form number for that
;;; form, and returns a lambda representing the translation of that
;;; form in the current global environment. The returned lambda is a
;;; top level lambda that can be called to cause evaluation of the
;;; forms. This lambda is in the initial component. If FOR-VALUE is T,
;;; then the value of the form is returned from the function,
;;; otherwise NIL is returned.
;;;
;;; This function may have arbitrary effects on the global environment
;;; due to processing of EVAL-WHENs. All syntax error checking is
;;; done, with erroneous forms being replaced by a proxy which signals
;;; an error if it is evaluated. Warnings about possibly inconsistent
;;; or illegal changes to the global environment will also be given.
;;;
;;; We make the initial component and convert the form in a PROGN (and
;;; an optional NIL tacked on the end.) We then return the lambda. We
;;; bind all of our state variables here, rather than relying on the
;;; global value (if any) so that IR1 conversion will be reentrant.
;;; This is necessary for EVAL-WHEN processing, etc.
;;;
;;; The hashtables used to hold global namespace info must be
;;; reallocated elsewhere. Note also that *LEXENV* is not bound, so
;;; that local macro definitions can be introduced by enclosing code.
(defun ir1-toplevel (form path for-value)
(declare (list path))
(let* ((*current-path* path)
(component (make-empty-component))
(*current-component* component)
(*allow-instrumenting* t))
(setf (component-name component) "initial component")
(setf (component-kind component) :initial)
(let* ((forms (if for-value `(,form) `(,form nil)))
(res (ir1-convert-lambda-body
forms ()
:debug-name (debug-namify "top level form " form))))
(setf (functional-entry-fun res) res
(functional-arg-documentation res) ()
(functional-kind res) :toplevel)
res)))
;;; *CURRENT-FORM-NUMBER* is used in FIND-SOURCE-PATHS to compute the
;;; form number to associate with a source path. This should be bound
;;; to an initial value of 0 before the processing of each truly
;;; top level form.
(declaim (type index *current-form-number*))
(defvar *current-form-number*)
;;; This function is called on freshly read forms to record the
;;; initial location of each form (and subform.) Form is the form to
;;; find the paths in, and TLF-NUM is the top level form number of the
;;; truly top level form.
;;;
;;; This gets a bit interesting when the source code is circular. This
;;; can (reasonably?) happen in the case of circular list constants.
(defun find-source-paths (form tlf-num)
(declare (type index tlf-num))
(let ((*current-form-number* 0))
(sub-find-source-paths form (list tlf-num)))
(values))
(defun sub-find-source-paths (form path)
(unless (gethash form *source-paths*)
(setf (gethash form *source-paths*)
(list* 'original-source-start *current-form-number* path))
(incf *current-form-number*)
(let ((pos 0)
(subform form)
(trail form))
(declare (fixnum pos))
(macrolet ((frob ()
'(progn
(when (atom subform) (return))
(let ((fm (car subform)))
(when (consp fm)
(sub-find-source-paths fm (cons pos path)))
(incf pos))
(setq subform (cdr subform))
(when (eq subform trail) (return)))))
(loop
(frob)
(frob)
(setq trail (cdr trail)))))))
;;;; IR1-CONVERT, macroexpansion and special form dispatching
(declaim (ftype (sfunction (ctran ctran (or lvar null) t) (values))
ir1-convert))
(macrolet (;; Bind *COMPILER-ERROR-BAILOUT* to a function that throws
;; out of the body and converts a condition signalling form
;; instead. The source form is converted to a string since it
;; may contain arbitrary non-externalizable objects.
(ir1-error-bailout ((start next result form) &body body)
(with-unique-names (skip condition)
`(block ,skip
(let ((,condition (catch 'ir1-error-abort
(let ((*compiler-error-bailout*
(lambda (&optional e)
(throw 'ir1-error-abort e))))
,@body
(return-from ,skip nil)))))
(ir1-convert ,start ,next ,result
(make-compiler-error-form ,condition ,form)))))))
;; Translate FORM into IR1. The code is inserted as the NEXT of the
;; CTRAN START. RESULT is the LVAR which receives the value of the
;; FORM to be translated. The translators call this function
;; recursively to translate their subnodes.
;;
;; As a special hack to make life easier in the compiler, a LEAF
;; IR1-converts into a reference to that LEAF structure. This allows
;; the creation using backquote of forms that contain leaf
;; references, without having to introduce dummy names into the
;; namespace.
(defun ir1-convert (start next result form)
(ir1-error-bailout (start next result form)
(let ((*current-path* (or (gethash form *source-paths*)
(cons form *current-path*))))
(cond ((step-form-p form)
(ir1-convert-step start next result form))
((atom form)
(cond ((and (symbolp form) (not (keywordp form)))
(ir1-convert-var start next result form))
((leaf-p form)
(reference-leaf start next result form))
(t
(reference-constant start next result form))))
(t
(let ((opname (car form)))
(cond ((or (symbolp opname) (leaf-p opname))
(let ((lexical-def (if (leaf-p opname)
opname
(lexenv-find opname funs))))
(typecase lexical-def
(null
(ir1-convert-global-functoid start next result
form))
(functional
(ir1-convert-local-combination start next result
form
lexical-def))
(global-var
(ir1-convert-srctran start next result
lexical-def form))
(t
(aver (and (consp lexical-def)
(eq (car lexical-def) 'macro)))
(ir1-convert start next result
(careful-expand-macro (cdr lexical-def)
form))))))
((or (atom opname) (not (eq (car opname) 'lambda)))
(compiler-error "illegal function call"))
(t
;; implicitly (LAMBDA ..) because the LAMBDA
;; expression is the CAR of an executed form
(ir1-convert-combination start next result
form
(ir1-convert-lambda
opname
:debug-name (debug-namify
"LAMBDA CAR "
opname))))))))))
(values))
;; Generate a reference to a manifest constant, creating a new leaf
;; if necessary. If we are producing a fasl file, make sure that
;; MAKE-LOAD-FORM gets used on any parts of the constant that it
;; needs to be.
(defun reference-constant (start next result value)
(declare (type ctran start next)
(type (or lvar null) result)
(inline find-constant))
(ir1-error-bailout (start next result value)
(when (producing-fasl-file)
(maybe-emit-make-load-forms value))
(let* ((leaf (find-constant value))
(res (make-ref leaf)))
(push res (leaf-refs leaf))
(link-node-to-previous-ctran res start)
(use-continuation res next result)))
(values)))
;;; Add FUNCTIONAL to the COMPONENT-REANALYZE-FUNCTIONALS, unless it's
;;; some trivial type for which reanalysis is a trivial no-op, or
;;; unless it doesn't belong in this component at all.
;;;
;;; FUNCTIONAL is returned.
(defun maybe-reanalyze-functional (functional)
(aver (not (eql (functional-kind functional) :deleted))) ; bug 148
(aver-live-component *current-component*)
;; When FUNCTIONAL is of a type for which reanalysis isn't a trivial
;; no-op
(when (typep functional '(or optional-dispatch clambda))
;; When FUNCTIONAL knows its component
(when (lambda-p functional)
(aver (eql (lambda-component functional) *current-component*)))
(pushnew functional
(component-reanalyze-functionals *current-component*)))
functional)
;;; Generate a REF node for LEAF, frobbing the LEAF structure as
;;; needed. If LEAF represents a defined function which has already
;;; been converted, and is not :NOTINLINE, then reference the
;;; functional instead.
(defun reference-leaf (start next result leaf)
(declare (type ctran start next) (type (or lvar null) result) (type leaf leaf))
(when (functional-p leaf)
(assure-functional-live-p leaf))
(let* ((type (lexenv-find leaf type-restrictions))
(leaf (or (and (defined-fun-p leaf)
(not (eq (defined-fun-inlinep leaf)
:notinline))
(let ((functional (defined-fun-functional leaf)))
(when (and functional
(not (functional-kind functional)))
(maybe-reanalyze-functional functional))))
(when (and (lambda-p leaf)
(memq (functional-kind leaf)
'(nil :optional)))
(maybe-reanalyze-functional leaf))
leaf))
(ref (make-ref leaf)))
(push ref (leaf-refs leaf))
(setf (leaf-ever-used leaf) t)
(link-node-to-previous-ctran ref start)
(cond (type (let* ((ref-ctran (make-ctran))
(ref-lvar (make-lvar))
(cast (make-cast ref-lvar
(make-single-value-type type)
(lexenv-policy *lexenv*))))
(setf (lvar-dest ref-lvar) cast)
(use-continuation ref ref-ctran ref-lvar)
(link-node-to-previous-ctran cast ref-ctran)
(use-continuation cast next result)))
(t (use-continuation ref next result)))))
;;; Convert a reference to a symbolic constant or variable. If the
;;; symbol is entered in the LEXENV-VARS we use that definition,
;;; otherwise we find the current global definition. This is also
;;; where we pick off symbol macro and alien variable references.
(defun ir1-convert-var (start next result name)
(declare (type ctran start next) (type (or lvar null) result) (symbol name))
(let ((var (or (lexenv-find name vars) (find-free-var name))))
(etypecase var
(leaf
(when (lambda-var-p var)
(let ((home (ctran-home-lambda-or-null start)))
(when home
(pushnew var (lambda-calls-or-closes home))))
(when (lambda-var-ignorep var)
;; (ANSI's specification for the IGNORE declaration requires
;; that this be a STYLE-WARNING, not a full WARNING.)
#-sb-xc-host
(compiler-style-warn "reading an ignored variable: ~S" name)
;; there's no need for us to accept ANSI's lameness when
;; processing our own code, though.
#+sb-xc-host
(warn "reading an ignored variable: ~S" name)))
(reference-leaf start next result var))
(cons
(aver (eq (car var) 'MACRO))
;; FIXME: [Free] type declarations. -- APD, 2002-01-26
(ir1-convert start next result (cdr var)))
(heap-alien-info
(ir1-convert start next result `(%heap-alien ',var)))))
(values))
;;; Convert anything that looks like a special form, global function
;;; or compiler-macro call.
(defun ir1-convert-global-functoid (start next result form)
(declare (type ctran start next) (type (or lvar null) result) (list form))
(let* ((fun-name (first form))
(translator (info :function :ir1-convert fun-name))
(cmacro-fun (sb!xc:compiler-macro-function fun-name *lexenv*)))
(cond (translator
(when cmacro-fun
(compiler-warn "ignoring compiler macro for special form"))
(funcall translator start next result form))
((and cmacro-fun
;; gotcha: If you look up the DEFINE-COMPILER-MACRO
;; macro in the ANSI spec, you might think that
;; suppressing compiler-macro expansion when NOTINLINE
;; is some pre-ANSI hack. However, if you look up the
;; NOTINLINE declaration, you'll find that ANSI
;; requires this behavior after all.
(not (eq (info :function :inlinep fun-name) :notinline)))
(let ((res (careful-expand-macro cmacro-fun form)))
(if (eq res form)
(ir1-convert-global-functoid-no-cmacro
start next result form fun-name)
(ir1-convert start next result res))))
(t
(ir1-convert-global-functoid-no-cmacro start next result
form fun-name)))))
;;; Handle the case of where the call was not a compiler macro, or was
;;; a compiler macro and passed.
(defun ir1-convert-global-functoid-no-cmacro (start next result form fun)
(declare (type ctran start next) (type (or lvar null) result)
(list form))
;; FIXME: Couldn't all the INFO calls here be converted into
;; standard CL functions, like MACRO-FUNCTION or something?
;; And what happens with lexically-defined (MACROLET) macros
;; here, anyway?
(ecase (info :function :kind fun)
(:macro
(ir1-convert start next result
(careful-expand-macro (info :function :macro-function fun)
form)))
((nil :function)
(ir1-convert-srctran start next result
(find-free-fun fun "shouldn't happen! (no-cmacro)")
form))))
(defun muffle-warning-or-die ()
(muffle-warning)
(bug "no MUFFLE-WARNING restart"))
;;; Expand FORM using the macro whose MACRO-FUNCTION is FUN, trapping
;;; errors which occur during the macroexpansion.
(defun careful-expand-macro (fun form)
(let (;; a hint I (WHN) wish I'd known earlier
(hint "(hint: For more precise location, try *BREAK-ON-SIGNALS*.)"))
(flet (;; Return a string to use as a prefix in error reporting,
;; telling something about which form caused the problem.
(wherestring ()
(let ((*print-pretty* nil)
;; We rely on the printer to abbreviate FORM.
(*print-length* 3)
(*print-level* 1))
(format
nil
#-sb-xc-host "(in macroexpansion of ~S)"
;; longer message to avoid ambiguity "Was it the xc host
;; or the cross-compiler which encountered the problem?"
#+sb-xc-host "(in cross-compiler macroexpansion of ~S)"
form))))
(handler-bind ((style-warning (lambda (c)
(compiler-style-warn
"~@<~A~:@_~A~@:_~A~:>"
(wherestring) hint c)
(muffle-warning-or-die)))
;; KLUDGE: CMU CL in its wisdom (version 2.4.6 for
;; Debian Linux, anyway) raises a CL:WARNING
;; condition (not a CL:STYLE-WARNING) for undefined
;; symbols when converting interpreted functions,
;; causing COMPILE-FILE to think the file has a real
;; problem, causing COMPILE-FILE to return FAILURE-P
;; set (not just WARNINGS-P set). Since undefined
;; symbol warnings are often harmless forward
;; references, and since it'd be inordinately painful
;; to try to eliminate all such forward references,
;; these warnings are basically unavoidable. Thus, we
;; need to coerce the system to work through them,
;; and this code does so, by crudely suppressing all
;; warnings in cross-compilation macroexpansion. --
;; WHN 19990412
#+(and cmu sb-xc-host)
(warning (lambda (c)
(compiler-notify
"~@<~A~:@_~
~A~:@_~
~@<(KLUDGE: That was a non-STYLE WARNING. ~
Ordinarily that would cause compilation to ~
fail. However, since we're running under ~
CMU CL, and since CMU CL emits non-STYLE ~
warnings for safe, hard-to-fix things (e.g. ~
references to not-yet-defined functions) ~
we're going to have to ignore it and ~
proceed anyway. Hopefully we're not ~
ignoring anything horrible here..)~:@>~:>"
(wherestring)
c)
(muffle-warning-or-die)))
#-(and cmu sb-xc-host)
(warning (lambda (c)
(warn "~@<~A~:@_~A~@:_~A~:>"
(wherestring) hint c)
(muffle-warning-or-die)))
(error (lambda (c)
(compiler-error "~@<~A~:@_~A~@:_~A~:>"
(wherestring) hint c))))
(funcall sb!xc:*macroexpand-hook* fun form *lexenv*)))))
;;;; conversion utilities
;;; Convert a bunch of forms, discarding all the values except the
;;; last. If there aren't any forms, then translate a NIL.
(declaim (ftype (sfunction (ctran ctran (or lvar null) list) (values))
ir1-convert-progn-body))
(defun ir1-convert-progn-body (start next result body)
(if (endp body)
(reference-constant start next result nil)
(let ((this-start start)
(forms body))
(loop
(let ((form (car forms)))
(when (endp (cdr forms))
(ir1-convert this-start next result form)
(return))
(let ((this-ctran (make-ctran)))
(ir1-convert this-start this-ctran nil form)
(setq this-start this-ctran
forms (cdr forms)))))))
(values))
;;;; converting combinations
;;; Convert a function call where the function FUN is a LEAF. FORM is
;;; the source for the call. We return the COMBINATION node so that
;;; the caller can poke at it if it wants to.
(declaim (ftype (sfunction (ctran ctran (or lvar null) list leaf) combination)
ir1-convert-combination))
(defun ir1-convert-combination (start next result form fun)
(let ((ctran (make-ctran))
(fun-lvar (make-lvar)))
(ir1-convert start ctran fun-lvar `(the (or function symbol) ,fun))
(ir1-convert-combination-args fun-lvar ctran next result (cdr form))))
;;; Convert the arguments to a call and make the COMBINATION
;;; node. FUN-LVAR yields the function to call. ARGS is the list of
;;; arguments for the call, which defaults to the cdr of source. We
;;; return the COMBINATION node.
(defun ir1-convert-combination-args (fun-lvar start next result args)
(declare (type ctran start next)
(type lvar fun-lvar)
(type (or lvar null) result)
(list args))
(let ((node (make-combination fun-lvar)))
(setf (lvar-dest fun-lvar) node)
(collect ((arg-lvars))
(let ((this-start start))
(dolist (arg args)
(let ((this-ctran (make-ctran))
(this-lvar (make-lvar node)))
(ir1-convert this-start this-ctran this-lvar arg)
(setq this-start this-ctran)
(arg-lvars this-lvar)))
(link-node-to-previous-ctran node this-start)
(use-continuation node next result)
(setf (combination-args node) (arg-lvars))))
node))
;;; Convert a call to a global function. If not :NOTINLINE, then we do
;;; source transforms and try out any inline expansion. If there is no
;;; expansion, but is :INLINE, then give an efficiency note (unless a
;;; known function which will quite possibly be open-coded.) Next, we
;;; go to ok-combination conversion.
(defun ir1-convert-srctran (start next result var form)
(declare (type ctran start next) (type (or lvar null) result)
(type global-var var))
(let ((inlinep (when (defined-fun-p var)
(defined-fun-inlinep var))))
(if (eq inlinep :notinline)
(ir1-convert-combination start next result form var)
(let ((transform (info :function
:source-transform
(leaf-source-name var))))
(if transform
(multiple-value-bind (transformed pass) (funcall transform form)
(if pass
(ir1-convert-maybe-predicate start next result form var)
(ir1-convert start next result transformed)))
(ir1-convert-maybe-predicate start next result form var))))))
;;; If the function has the PREDICATE attribute, and the RESULT's DEST
;;; isn't an IF, then we convert (IF <form> T NIL), ensuring that a
;;; predicate always appears in a conditional context.
;;;
;;; If the function isn't a predicate, then we call
;;; IR1-CONVERT-COMBINATION-CHECKING-TYPE.
(defun ir1-convert-maybe-predicate (start next result form var)
(declare (type ctran start next)
(type (or lvar null) result)
(list form)
(type global-var var))
(let ((info (info :function :info (leaf-source-name var))))
(if (and info
(ir1-attributep (fun-info-attributes info) predicate)
(not (if-p (and result (lvar-dest result)))))
(ir1-convert start next result `(if ,form t nil))
(ir1-convert-combination-checking-type start next result form var))))
;;; Actually really convert a global function call that we are allowed
;;; to early-bind.
;;;
;;; If we know the function type of the function, then we check the
;;; call for syntactic legality with respect to the declared function
;;; type. If it is impossible to determine whether the call is correct
;;; due to non-constant keywords, then we give up, marking the call as
;;; :FULL to inhibit further error messages. We return true when the
;;; call is legal.
;;;
;;; If the call is legal, we also propagate type assertions from the
;;; function type to the arg and result lvars. We do this now so that
;;; IR1 optimize doesn't have to redundantly do the check later so
;;; that it can do the type propagation.
(defun ir1-convert-combination-checking-type (start next result form var)
(declare (type ctran start next) (type (or lvar null) result)
(list form)
(type leaf var))
(let* ((node (ir1-convert-combination start next result form var))
(fun-lvar (basic-combination-fun node))
(type (leaf-type var)))
(when (validate-call-type node type t)
(setf (lvar-%derived-type fun-lvar)
(make-single-value-type type))
(setf (lvar-reoptimize fun-lvar) nil)))
(values))
;;; Convert a call to a local function, or if the function has already
;;; been LET converted, then throw FUNCTIONAL to
;;; LOCALL-ALREADY-LET-CONVERTED. The THROW should only happen when we
;;; are converting inline expansions for local functions during
;;; optimization.
(defun ir1-convert-local-combination (start next result form functional)
(assure-functional-live-p functional)
(ir1-convert-combination start next result
form
(maybe-reanalyze-functional functional)))
;;;; PROCESS-DECLS
;;; Given a list of LAMBDA-VARs and a variable name, return the
;;; LAMBDA-VAR for that name, or NIL if it isn't found. We return the
;;; *last* variable with that name, since LET* bindings may be
;;; duplicated, and declarations always apply to the last.
(declaim (ftype (sfunction (list symbol) (or lambda-var list))
find-in-bindings))
(defun find-in-bindings (vars name)
(let ((found nil))
(dolist (var vars)
(cond ((leaf-p var)
(when (eq (leaf-source-name var) name)
(setq found var))
(let ((info (lambda-var-arg-info var)))
(when info
(let ((supplied-p (arg-info-supplied-p info)))
(when (and supplied-p
(eq (leaf-source-name supplied-p) name))
(setq found supplied-p))))))
((and (consp var) (eq (car var) name))
(setf found (cdr var)))))
found))
;;; Called by PROCESS-DECLS to deal with a variable type declaration.
;;; If a LAMBDA-VAR being bound, we intersect the type with the var's
;;; type, otherwise we add a type restriction on the var. If a symbol
;;; macro, we just wrap a THE around the expansion.
(defun process-type-decl (decl res vars)
(declare (list decl vars) (type lexenv res))
(let ((type (compiler-specifier-type (first decl))))
(collect ((restr nil cons)
(new-vars nil cons))
(dolist (var-name (rest decl))
(when (boundp var-name)
(compiler-assert-symbol-home-package-unlocked
var-name "declaring the type of ~A"))
(let* ((bound-var (find-in-bindings vars var-name))
(var (or bound-var
(lexenv-find var-name vars)
(find-free-var var-name))))
(etypecase var
(leaf
(flet
((process-var (var bound-var)
(let* ((old-type (or (lexenv-find var type-restrictions)
(leaf-type var)))
(int (if (or (fun-type-p type)
(fun-type-p old-type))
type
(type-approx-intersection2
old-type type))))
(cond ((eq int *empty-type*)
(unless (policy *lexenv* (= inhibit-warnings 3))
(warn
'type-warning
:format-control
"The type declarations ~S and ~S for ~S conflict."
:format-arguments
(list
(type-specifier old-type)
(type-specifier type)
var-name))))
(bound-var (setf (leaf-type bound-var) int))
(t
(restr (cons var int)))))))
(process-var var bound-var)
(awhen (and (lambda-var-p var)
(lambda-var-specvar var))
(process-var it nil))))
(cons
;; FIXME: non-ANSI weirdness
(aver (eq (car var) 'MACRO))
(new-vars `(,var-name . (MACRO . (the ,(first decl)
,(cdr var))))))
(heap-alien-info
(compiler-error
"~S is an alien variable, so its type can't be declared."
var-name)))))
(if (or (restr) (new-vars))
(make-lexenv :default res
:type-restrictions (restr)
:vars (new-vars))
res))))
;;; This is somewhat similar to PROCESS-TYPE-DECL, but handles
;;; declarations for function variables. In addition to allowing
;;; declarations for functions being bound, we must also deal with
;;; declarations that constrain the type of lexically apparent
;;; functions.
(defun process-ftype-decl (spec res names fvars)
(declare (type list names fvars)
(type lexenv res))
(let ((type (compiler-specifier-type spec)))
(collect ((res nil cons))
(dolist (name names)
(when (fboundp name)
(compiler-assert-symbol-home-package-unlocked name
"declaring the ftype of ~A"))
(let ((found (find name fvars
:key #'leaf-source-name
:test #'equal)))
(cond
(found
(setf (leaf-type found) type)
(assert-definition-type found type
:unwinnage-fun #'compiler-notify
:where "FTYPE declaration"))
(t
(res (cons (find-lexically-apparent-fun
name "in a function type declaration")
type))))))
(if (res)
(make-lexenv :default res :type-restrictions (res))
res))))
;;; Process a special declaration, returning a new LEXENV. A non-bound
;;; special declaration is instantiated by throwing a special variable
;;; into the variables.
(defun process-special-decl (spec res vars)
(declare (list spec vars) (type lexenv res))
(collect ((new-venv nil cons))
(dolist (name (cdr spec))
(compiler-assert-symbol-home-package-unlocked name "declaring ~A special")
(let ((var (find-in-bindings vars name)))
(etypecase var
(cons
(aver (eq (car var) 'MACRO))
(compiler-error
"~S is a symbol-macro and thus can't be declared special."
name))
(lambda-var
(when (lambda-var-ignorep var)
;; ANSI's definition for "Declaration IGNORE, IGNORABLE"
;; requires that this be a STYLE-WARNING, not a full WARNING.
(compiler-style-warn
"The ignored variable ~S is being declared special."
name))
(setf (lambda-var-specvar var)
(specvar-for-binding name)))
(null
(unless (assoc name (new-venv) :test #'eq)
(new-venv (cons name (specvar-for-binding name))))))))
(if (new-venv)
(make-lexenv :default res :vars (new-venv))
res)))
;;; Return a DEFINED-FUN which copies a GLOBAL-VAR but for its INLINEP
;;; (and TYPE if notinline).
(defun make-new-inlinep (var inlinep)
(declare (type global-var var) (type inlinep inlinep))
(let ((res (make-defined-fun
:%source-name (leaf-source-name var)
:where-from (leaf-where-from var)
:type (if (and (eq inlinep :notinline)
(not (eq (leaf-where-from var) :declared)))
(specifier-type 'function)
(leaf-type var))
:inlinep inlinep)))
(when (defined-fun-p var)
(setf (defined-fun-inline-expansion res)
(defined-fun-inline-expansion var))
(setf (defined-fun-functional res)
(defined-fun-functional var)))
res))
;;; Parse an inline/notinline declaration. If it's a local function we're
;;; defining, set its INLINEP. If a global function, add a new FENV entry.
(defun process-inline-decl (spec res fvars)
(let ((sense (cdr (assoc (first spec) *inlinep-translations* :test #'eq)))
(new-fenv ()))
(dolist (name (rest spec))
(let ((fvar (find name fvars
:key #'leaf-source-name
:test #'equal)))
(if fvar
(setf (functional-inlinep fvar) sense)
(let ((found
(find-lexically-apparent-fun
name "in an inline or notinline declaration")))
(etypecase found
(functional
(when (policy *lexenv* (>= speed inhibit-warnings))
(compiler-notify "ignoring ~A declaration not at ~
definition of local function:~% ~S"
sense name)))
(global-var
(push (cons name (make-new-inlinep found sense))
new-fenv)))))))
(if new-fenv
(make-lexenv :default res :funs new-fenv)
res)))
;;; like FIND-IN-BINDINGS, but looks for #'FOO in the FVARS
(defun find-in-bindings-or-fbindings (name vars fvars)
(declare (list vars fvars))
(if (consp name)
(destructuring-bind (wot fn-name) name
(unless (eq wot 'function)
(compiler-error "The function or variable name ~S is unrecognizable."
name))
(find fn-name fvars :key #'leaf-source-name :test #'equal))
(find-in-bindings vars name)))
;;; Process an ignore/ignorable declaration, checking for various losing
;;; conditions.
(defun process-ignore-decl (spec vars fvars)
(declare (list spec vars fvars))
(dolist (name (rest spec))
(let ((var (find-in-bindings-or-fbindings name vars fvars)))
(cond
((not var)
;; ANSI's definition for "Declaration IGNORE, IGNORABLE"
;; requires that this be a STYLE-WARNING, not a full WARNING.
(compiler-style-warn "declaring unknown variable ~S to be ignored"
name))
;; FIXME: This special case looks like non-ANSI weirdness.
((and (consp var) (eq (car var) 'macro))
;; Just ignore the IGNORE decl.
)
((functional-p var)
(setf (leaf-ever-used var) t))
((and (lambda-var-specvar var) (eq (first spec) 'ignore))
;; ANSI's definition for "Declaration IGNORE, IGNORABLE"
;; requires that this be a STYLE-WARNING, not a full WARNING.
(compiler-style-warn "declaring special variable ~S to be ignored"
name))
((eq (first spec) 'ignorable)
(setf (leaf-ever-used var) t))
(t
(setf (lambda-var-ignorep var) t)))))
(values))
(defun process-dx-decl (names vars)
(flet ((maybe-notify (control &rest args)
(when (policy *lexenv* (> speed inhibit-warnings))
(apply #'compiler-notify control args))))
(if (policy *lexenv* (= stack-allocate-dynamic-extent 3))
(dolist (name names)
(cond
((symbolp name)
(let* ((bound-var (find-in-bindings vars name))
(var (or bound-var
(lexenv-find name vars)
(find-free-var name))))
(etypecase var
(leaf
(if bound-var
(setf (leaf-dynamic-extent var) t)
(maybe-notify
"ignoring DYNAMIC-EXTENT declaration for free ~S"
name)))
(cons
(compiler-error "DYNAMIC-EXTENT on symbol-macro: ~S" name))
(heap-alien-info
(compiler-error "DYNAMIC-EXTENT on heap-alien-info: ~S"
name)))))
((and (consp name)
(eq (car name) 'function)
(null (cddr name))
(valid-function-name-p (cadr name)))
(maybe-notify "ignoring DYNAMIC-EXTENT declaration for ~S" name))
(t (compiler-error "DYNAMIC-EXTENT on a weird thing: ~S" name))))
(maybe-notify "ignoring DYNAMIC-EXTENT declarations for ~S" names))))
;;; FIXME: This is non-ANSI, so the default should be T, or it should
;;; go away, I think.
(defvar *suppress-values-declaration* nil
#!+sb-doc
"If true, processing of the VALUES declaration is inhibited.")
;;; Process a single declaration spec, augmenting the specified LEXENV
;;; RES. Return RES and result type. VARS and FVARS are as described
;;; PROCESS-DECLS.
(defun process-1-decl (raw-spec res vars fvars)
(declare (type list raw-spec vars fvars))
(declare (type lexenv res))
(let ((spec (canonized-decl-spec raw-spec))
(result-type *wild-type*))
(values
(case (first spec)
(special (process-special-decl spec res vars))
(ftype
(unless (cdr spec)
(compiler-error "no type specified in FTYPE declaration: ~S" spec))
(process-ftype-decl (second spec) res (cddr spec) fvars))
((inline notinline maybe-inline)
(process-inline-decl spec res fvars))
((ignore ignorable)
(process-ignore-decl spec vars fvars)
res)
(optimize
(make-lexenv
:default res
:policy (process-optimize-decl spec (lexenv-policy res))))
(muffle-conditions
(make-lexenv
:default res
:handled-conditions (process-muffle-conditions-decl
spec (lexenv-handled-conditions res))))
(unmuffle-conditions
(make-lexenv
:default res
:handled-conditions (process-unmuffle-conditions-decl
spec (lexenv-handled-conditions res))))
(type
(process-type-decl (cdr spec) res vars))
(values
(unless *suppress-values-declaration*
(let ((types (cdr spec)))
(setq result-type
(compiler-values-specifier-type
(if (singleton-p types)
(car types)
`(values ,@types)))))
res))
(dynamic-extent
(process-dx-decl (cdr spec) vars)
res)
((disable-package-locks enable-package-locks)
(make-lexenv
:default res
:disabled-package-locks (process-package-lock-decl
spec (lexenv-disabled-package-locks res))))
(t
(unless (info :declaration :recognized (first spec))
(compiler-warn "unrecognized declaration ~S" raw-spec))
res))
result-type)))
;;; Use a list of DECLARE forms to annotate the lists of LAMBDA-VAR
;;; and FUNCTIONAL structures which are being bound. In addition to
;;; filling in slots in the leaf structures, we return a new LEXENV,
;;; which reflects pervasive special and function type declarations,
;;; (NOT)INLINE declarations and OPTIMIZE declarations, and type of
;;; VALUES declarations.
;;;
;;; This is also called in main.lisp when PROCESS-FORM handles a use
;;; of LOCALLY.
(defun process-decls (decls vars fvars &optional (env *lexenv*))
(declare (list decls vars fvars))
(let ((result-type *wild-type*))
(dolist (decl decls)
(dolist (spec (rest decl))
(unless (consp spec)
(compiler-error "malformed declaration specifier ~S in ~S" spec decl))
(multiple-value-bind (new-env new-result-type)
(process-1-decl spec env vars fvars)
(setq env new-env)
(unless (eq new-result-type *wild-type*)
(setq result-type
(values-type-intersection result-type new-result-type))))))
(values env result-type)))
(defun %processing-decls (decls vars fvars ctran lvar fun)
(multiple-value-bind (*lexenv* result-type)
(process-decls decls vars fvars)
(cond ((eq result-type *wild-type*)
(funcall fun ctran lvar))
(t
(let ((value-ctran (make-ctran))
(value-lvar (make-lvar)))
(multiple-value-prog1
(funcall fun value-ctran value-lvar)
(let ((cast (make-cast value-lvar result-type
(lexenv-policy *lexenv*))))
(link-node-to-previous-ctran cast value-ctran)
(setf (lvar-dest value-lvar) cast)
(use-continuation cast ctran lvar))))))))
(defmacro processing-decls ((decls vars fvars ctran lvar) &body forms)
(check-type ctran symbol)
(check-type lvar symbol)
`(%processing-decls ,decls ,vars ,fvars ,ctran ,lvar
(lambda (,ctran ,lvar) ,@forms)))
;;; Return the SPECVAR for NAME to use when we see a local SPECIAL
;;; declaration. If there is a global variable of that name, then
;;; check that it isn't a constant and return it. Otherwise, create an
;;; anonymous GLOBAL-VAR.
(defun specvar-for-binding (name)
(cond ((not (eq (info :variable :where-from name) :assumed))
(let ((found (find-free-var name)))
(when (heap-alien-info-p found)
(compiler-error
"~S is an alien variable and so can't be declared special."
name))
(unless (global-var-p found)
(compiler-error
"~S is a constant and so can't be declared special."
name))
found))
(t
(make-global-var :kind :special
:%source-name name
:where-from :declared))))