[5d4902]: src / compiler / ir2tran.lisp Maximize Restore History

Download this file

ir2tran.lisp    1677 lines (1556 with data), 65.4 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
;;;; This file contains the virtual-machine-independent parts of the
;;;; code which does the actual translation of nodes to VOPs.
;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; This software is derived from the CMU CL system, which was
;;;; written at Carnegie Mellon University and released into the
;;;; public domain. The software is in the public domain and is
;;;; provided with absolutely no warranty. See the COPYING and CREDITS
;;;; files for more information.
(in-package "SB!C")
;;;; moves and type checks
;;; Move X to Y unless they are EQ.
(defun emit-move (node block x y)
(declare (type node node) (type ir2-block block) (type tn x y))
(unless (eq x y)
(vop move node block x y))
(values))
;;; If there is any CHECK-xxx template for TYPE, then return it,
;;; otherwise return NIL.
(defun type-check-template (type)
(declare (type ctype type))
(multiple-value-bind (check-ptype exact) (primitive-type type)
(if exact
(primitive-type-check check-ptype)
(let ((name (hairy-type-check-template-name type)))
(if name
(template-or-lose name)
nil)))))
;;; Emit code in BLOCK to check that VALUE is of the specified TYPE,
;;; yielding the checked result in RESULT. VALUE and result may be of
;;; any primitive type. There must be CHECK-xxx VOP for TYPE. Any
;;; other type checks should have been converted to an explicit type
;;; test.
(defun emit-type-check (node block value result type)
(declare (type tn value result) (type node node) (type ir2-block block)
(type ctype type))
(emit-move-template node block (type-check-template type) value result)
(values))
;;; Allocate an indirect value cell. Maybe do some clever stack
;;; allocation someday.
;;;
;;; FIXME: DO-MAKE-VALUE-CELL is a bad name, since it doesn't make
;;; clear what's the distinction between it and the MAKE-VALUE-CELL
;;; VOP, and since the DO- further connotes iteration, which has
;;; nothing to do with this. Clearer, more systematic names, anyone?
(defevent make-value-cell-event "Allocate heap value cell for lexical var.")
(defun do-make-value-cell (node block value res)
(event make-value-cell-event node)
(vop make-value-cell node block value res))
;;;; leaf reference
;;; Return the TN that holds the value of THING in the environment ENV.
(declaim (ftype (function ((or nlx-info lambda-var) physenv) tn)
find-in-physenv))
(defun find-in-physenv (thing physenv)
(or (cdr (assoc thing (ir2-physenv-closure (physenv-info physenv))))
(etypecase thing
(lambda-var
;; I think that a failure of this assertion means that we're
;; trying to access a variable which was improperly closed
;; over. The PHYSENV describes a physical environment. Every
;; variable that a form refers to should either be in its
;; physical environment directly, or grabbed from a
;; surrounding physical environment when it was closed over.
;; The ASSOC expression above finds closed-over variables, so
;; if we fell through the ASSOC expression, it wasn't closed
;; over. Therefore, it must be in our physical environment
;; directly. If instead it is in some other physical
;; environment, then it's bogus for us to reference it here
;; without it being closed over. -- WHN 2001-09-29
(aver (eq physenv (lambda-physenv (lambda-var-home thing))))
(leaf-info thing))
(nlx-info
(aver (eq physenv (block-physenv (nlx-info-target thing))))
(ir2-nlx-info-home (nlx-info-info thing))))
(bug "~@<~2I~_~S ~_not found in ~_~S~:>" thing physenv)))
;;; If LEAF already has a constant TN, return that, otherwise make a
;;; TN for it.
(defun constant-tn (leaf)
(declare (type constant leaf))
(or (leaf-info leaf)
(setf (leaf-info leaf)
(make-constant-tn leaf))))
;;; Return a TN that represents the value of LEAF, or NIL if LEAF
;;; isn't directly represented by a TN. ENV is the environment that
;;; the reference is done in.
(defun leaf-tn (leaf env)
(declare (type leaf leaf) (type physenv env))
(typecase leaf
(lambda-var
(unless (lambda-var-indirect leaf)
(find-in-physenv leaf env)))
(constant (constant-tn leaf))
(t nil)))
;;; This is used to conveniently get a handle on a constant TN during
;;; IR2 conversion. It returns a constant TN representing the Lisp
;;; object VALUE.
(defun emit-constant (value)
(constant-tn (find-constant value)))
;;; Convert a REF node. The reference must not be delayed.
(defun ir2-convert-ref (node block)
(declare (type ref node) (type ir2-block block))
(let* ((cont (node-cont node))
(leaf (ref-leaf node))
(locs (continuation-result-tns
cont (list (primitive-type (leaf-type leaf)))))
(res (first locs)))
(etypecase leaf
(lambda-var
(let ((tn (find-in-physenv leaf (node-physenv node))))
(if (lambda-var-indirect leaf)
(vop value-cell-ref node block tn res)
(emit-move node block tn res))))
(constant
(if (legal-immediate-constant-p leaf)
(emit-move node block (constant-tn leaf) res)
(let* ((name (leaf-source-name leaf))
(name-tn (emit-constant name)))
(if (policy node (zerop safety))
(vop symbol-value #+nil fast-symbol-value node block name-tn res)
(vop symbol-value node block name-tn res)))))
(functional
(ir2-convert-closure node block leaf res))
(global-var
(let ((unsafe (policy node (zerop safety)))
(name (leaf-source-name leaf)))
(ecase (global-var-kind leaf)
((:special :global)
(aver (symbolp name))
(let ((name-tn (emit-constant name)))
(if unsafe
(vop symbol-value node block name-tn res)
(vop symbol-value node block name-tn res))))
(:global-function
(let ((fdefn-tn (make-load-time-constant-tn :fdefinition name)))
(if unsafe
(vop fdefn-fun node block fdefn-tn res)
(vop safe-fdefn-fun node block fdefn-tn res))))))))
(move-continuation-result node block locs cont))
(values))
;;; some sanity checks for a CLAMBDA passed to IR2-CONVERT-CLOSURE
(defun assertions-on-ir2-converted-clambda (clambda)
;; This assertion was sort of an experiment. It would be nice and
;; sane and easier to understand things if it were *always* true,
;; but experimentally I observe that it's only *almost* always
;; true. -- WHN 2001-01-02
#+nil
(aver (eql (lambda-component clambda)
(block-component (ir2-block-block ir2-block))))
;; Check for some weirdness which came up in bug
;; 138, 2002-01-02.
;;
;; The MAKE-LOAD-TIME-CONSTANT-TN call above puts an :ENTRY record
;; into the IR2-COMPONENT-CONSTANTS table. The dump-a-COMPONENT
;; code
;; * treats every HANDLEless :ENTRY record into a
;; patch, and
;; * expects every patch to correspond to an
;; IR2-COMPONENT-ENTRIES record.
;; The IR2-COMPONENT-ENTRIES records are set by ENTRY-ANALYZE
;; walking over COMPONENT-LAMBDAS. Bug 138b arose because there
;; was a HANDLEless :ENTRY record which didn't correspond to an
;; IR2-COMPONENT-ENTRIES record. That problem is hard to debug
;; when it's caught at dump time, so this assertion tries to catch
;; it here.
(aver (member clambda
(component-lambdas (lambda-component clambda))))
;; another bug-138-related issue: COMPONENT-NEW-FUNCTIONALS is
;; used as a queue for stuff pending to do in IR1, and now that
;; we're doing IR2 it should've been completely flushed (but
;; wasn't).
(aver (null (component-new-functionals (lambda-component clambda))))
(values))
;;; Emit code to load a function object implementing FUNCTIONAL into
;;; RES. This gets interesting when the referenced function is a
;;; closure: we must make the closure and move the closed-over values
;;; into it.
;;;
;;; FUNCTIONAL is either a :TOPLEVEL-XEP functional or the XEP lambda
;;; for the called function, since local call analysis converts all
;;; closure references. If a :TOPLEVEL-XEP, we know it is not a
;;; closure.
;;;
;;; If a closed-over LAMBDA-VAR has no refs (is deleted), then we
;;; don't initialize that slot. This can happen with closures over
;;; top level variables, where optimization of the closure deleted the
;;; variable. Since we committed to the closure format when we
;;; pre-analyzed the top level code, we just leave an empty slot.
(defun ir2-convert-closure (ref ir2-block functional res)
(declare (type ref ref)
(type ir2-block ir2-block)
(type functional functional)
(type tn res))
(aver (not (eql (functional-kind functional) :deleted)))
(unless (leaf-info functional)
(setf (leaf-info functional)
(make-entry-info :name (functional-debug-name functional))))
(let ((entry (make-load-time-constant-tn :entry functional))
(closure (etypecase functional
(clambda
(assertions-on-ir2-converted-clambda functional)
(physenv-closure (get-lambda-physenv functional)))
(functional
(aver (eq (functional-kind functional) :toplevel-xep))
nil))))
(cond (closure
(let ((this-env (node-physenv ref)))
(vop make-closure ref ir2-block entry (length closure) res)
(loop for what in closure and n from 0 do
(unless (and (lambda-var-p what)
(null (leaf-refs what)))
(vop closure-init ref ir2-block
res
(find-in-physenv what this-env)
n)))))
(t
(emit-move ref ir2-block entry res))))
(values))
;;; Convert a SET node. If the node's CONT is annotated, then we also
;;; deliver the value to that continuation. If the var is a lexical
;;; variable with no refs, then we don't actually set anything, since
;;; the variable has been deleted.
(defun ir2-convert-set (node block)
(declare (type cset node) (type ir2-block block))
(let* ((cont (node-cont node))
(leaf (set-var node))
(val (continuation-tn node block (set-value node)))
(locs (if (continuation-info cont)
(continuation-result-tns
cont (list (primitive-type (leaf-type leaf))))
nil)))
(etypecase leaf
(lambda-var
(when (leaf-refs leaf)
(let ((tn (find-in-physenv leaf (node-physenv node))))
(if (lambda-var-indirect leaf)
(vop value-cell-set node block tn val)
(emit-move node block val tn)))))
(global-var
(ecase (global-var-kind leaf)
((:special :global)
(aver (symbolp (leaf-source-name leaf)))
(vop set node block (emit-constant (leaf-source-name leaf)) val)))))
(when locs
(emit-move node block val (first locs))
(move-continuation-result node block locs cont)))
(values))
;;;; utilities for receiving fixed values
;;; Return a TN that can be referenced to get the value of CONT. CONT
;;; must be LTN-ANNOTATED either as a delayed leaf ref or as a fixed,
;;; single-value continuation. If a type check is called for, do it.
;;;
;;; The primitive-type of the result will always be the same as the
;;; IR2-CONTINUATION-PRIMITIVE-TYPE, ensuring that VOPs are always
;;; called with TNs that satisfy the operand primitive-type
;;; restriction. We may have to make a temporary of the desired type
;;; and move the actual continuation TN into it. This happens when we
;;; delete a type check in unsafe code or when we locally know
;;; something about the type of an argument variable.
(defun continuation-tn (node block cont)
(declare (type node node) (type ir2-block block) (type continuation cont))
(let* ((2cont (continuation-info cont))
(cont-tn
(ecase (ir2-continuation-kind 2cont)
(:delayed
(let ((ref (continuation-use cont)))
(leaf-tn (ref-leaf ref) (node-physenv ref))))
(:fixed
(aver (= (length (ir2-continuation-locs 2cont)) 1))
(first (ir2-continuation-locs 2cont)))))
(ptype (ir2-continuation-primitive-type 2cont)))
(cond ((and (eq (continuation-type-check cont) t)
(multiple-value-bind (check types)
(continuation-check-types cont nil)
(aver (eq check :simple))
;; If the proven type is a subtype of the possibly
;; weakened type check then it's always true and is
;; flushed.
(unless (values-subtypep (continuation-proven-type cont)
(first types))
(let ((temp (make-normal-tn ptype)))
(emit-type-check node block cont-tn temp
(first types))
temp)))))
((eq (tn-primitive-type cont-tn) ptype) cont-tn)
(t
(let ((temp (make-normal-tn ptype)))
(emit-move node block cont-tn temp)
temp)))))
;;; This is similar to CONTINUATION-TN, but hacks multiple values. We
;;; return continuations holding the values of CONT with PTYPES as
;;; their primitive types. CONT must be annotated for the same number
;;; of fixed values are there are PTYPES.
;;;
;;; If the continuation has a type check, check the values into temps
;;; and return the temps. When we have more values than assertions, we
;;; move the extra values with no check.
(defun continuation-tns (node block cont ptypes)
(declare (type node node) (type ir2-block block)
(type continuation cont) (list ptypes))
(let* ((locs (ir2-continuation-locs (continuation-info cont)))
(nlocs (length locs)))
(aver (= nlocs (length ptypes)))
(if (eq (continuation-type-check cont) t)
(multiple-value-bind (check types) (continuation-check-types cont nil)
(aver (eq check :simple))
(let ((ntypes (length types)))
(mapcar (lambda (from to-type assertion)
(let ((temp (make-normal-tn to-type)))
(if assertion
(emit-type-check node block from temp assertion)
(emit-move node block from temp))
temp))
locs ptypes
(if (< ntypes nlocs)
(append types (make-list (- nlocs ntypes)
:initial-element nil))
types))))
(mapcar (lambda (from to-type)
(if (eq (tn-primitive-type from) to-type)
from
(let ((temp (make-normal-tn to-type)))
(emit-move node block from temp)
temp)))
locs
ptypes))))
;;;; utilities for delivering values to continuations
;;; Return a list of TNs with the specifier TYPES that can be used as
;;; result TNs to evaluate an expression into the continuation CONT.
;;; This is used together with MOVE-CONTINUATION-RESULT to deliver
;;; fixed values to a continuation.
;;;
;;; If the continuation isn't annotated (meaning the values are
;;; discarded) or is unknown-values, the then we make temporaries for
;;; each supplied value, providing a place to compute the result in
;;; until we decide what to do with it (if anything.)
;;;
;;; If the continuation is fixed-values, and wants the same number of
;;; values as the user wants to deliver, then we just return the
;;; IR2-CONTINUATION-LOCS. Otherwise we make a new list padded as
;;; necessary by discarded TNs. We always return a TN of the specified
;;; type, using the continuation locs only when they are of the
;;; correct type.
(defun continuation-result-tns (cont types)
(declare (type continuation cont) (type list types))
(let ((2cont (continuation-info cont)))
(if (not 2cont)
(mapcar #'make-normal-tn types)
(ecase (ir2-continuation-kind 2cont)
(:fixed
(let* ((locs (ir2-continuation-locs 2cont))
(nlocs (length locs))
(ntypes (length types)))
(if (and (= nlocs ntypes)
(do ((loc locs (cdr loc))
(type types (cdr type)))
((null loc) t)
(unless (eq (tn-primitive-type (car loc)) (car type))
(return nil))))
locs
(mapcar (lambda (loc type)
(if (eq (tn-primitive-type loc) type)
loc
(make-normal-tn type)))
(if (< nlocs ntypes)
(append locs
(mapcar #'make-normal-tn
(subseq types nlocs)))
locs)
types))))
(:unknown
(mapcar #'make-normal-tn types))))))
;;; Make the first N standard value TNs, returning them in a list.
(defun make-standard-value-tns (n)
(declare (type unsigned-byte n))
(collect ((res))
(dotimes (i n)
(res (standard-arg-location i)))
(res)))
;;; Return a list of TNs wired to the standard value passing
;;; conventions that can be used to receive values according to the
;;; unknown-values convention. This is used with together
;;; MOVE-CONTINUATION-RESULT for delivering unknown values to a fixed
;;; values continuation.
;;;
;;; If the continuation isn't annotated, then we treat as 0-values,
;;; returning an empty list of temporaries.
;;;
;;; If the continuation is annotated, then it must be :FIXED.
(defun standard-result-tns (cont)
(declare (type continuation cont))
(let ((2cont (continuation-info cont)))
(if 2cont
(ecase (ir2-continuation-kind 2cont)
(:fixed
(make-standard-value-tns (length (ir2-continuation-locs 2cont)))))
())))
;;; Just move each SRC TN into the corresponding DEST TN, defaulting
;;; any unsupplied source values to NIL. We let EMIT-MOVE worry about
;;; doing the appropriate coercions.
(defun move-results-coerced (node block src dest)
(declare (type node node) (type ir2-block block) (list src dest))
(let ((nsrc (length src))
(ndest (length dest)))
(mapc (lambda (from to)
(unless (eq from to)
(emit-move node block from to)))
(if (> ndest nsrc)
(append src (make-list (- ndest nsrc)
:initial-element (emit-constant nil)))
src)
dest))
(values))
;;; If necessary, emit coercion code needed to deliver the RESULTS to
;;; the specified continuation. NODE and BLOCK provide context for
;;; emitting code. Although usually obtained from STANDARD-RESULT-TNs
;;; or CONTINUATION-RESULT-TNs, RESULTS my be a list of any type or
;;; number of TNs.
;;;
;;; If the continuation is fixed values, then move the results into
;;; the continuation locations. If the continuation is unknown values,
;;; then do the moves into the standard value locations, and use
;;; PUSH-VALUES to put the values on the stack.
(defun move-continuation-result (node block results cont)
(declare (type node node) (type ir2-block block)
(list results) (type continuation cont))
(let* ((2cont (continuation-info cont)))
(when 2cont
(ecase (ir2-continuation-kind 2cont)
(:fixed
(let ((locs (ir2-continuation-locs 2cont)))
(unless (eq locs results)
(move-results-coerced node block results locs))))
(:unknown
(let* ((nvals (length results))
(locs (make-standard-value-tns nvals)))
(move-results-coerced node block results locs)
(vop* push-values node block
((reference-tn-list locs nil))
((reference-tn-list (ir2-continuation-locs 2cont) t))
nvals))))))
(values))
;;;; template conversion
;;; Build a TN-REFS list that represents access to the values of the
;;; specified list of continuations ARGS for TEMPLATE. Any :CONSTANT
;;; arguments are returned in the second value as a list rather than
;;; being accessed as a normal argument. NODE and BLOCK provide the
;;; context for emitting any necessary type-checking code.
(defun reference-args (node block args template)
(declare (type node node) (type ir2-block block) (list args)
(type template template))
(collect ((info-args))
(let ((last nil)
(first nil))
(do ((args args (cdr args))
(types (template-arg-types template) (cdr types)))
((null args))
(let ((type (first types))
(arg (first args)))
(if (and (consp type) (eq (car type) ':constant))
(info-args (continuation-value arg))
(let ((ref (reference-tn (continuation-tn node block arg) nil)))
(if last
(setf (tn-ref-across last) ref)
(setf first ref))
(setq last ref)))))
(values (the (or tn-ref null) first) (info-args)))))
;;; Convert a conditional template. We try to exploit any
;;; drop-through, but emit an unconditional branch afterward if we
;;; fail. NOT-P is true if the sense of the TEMPLATE's test should be
;;; negated.
(defun ir2-convert-conditional (node block template args info-args if not-p)
(declare (type node node) (type ir2-block block)
(type template template) (type (or tn-ref null) args)
(list info-args) (type cif if) (type boolean not-p))
(aver (= (template-info-arg-count template) (+ (length info-args) 2)))
(let ((consequent (if-consequent if))
(alternative (if-alternative if)))
(cond ((drop-thru-p if consequent)
(emit-template node block template args nil
(list* (block-label alternative) (not not-p)
info-args)))
(t
(emit-template node block template args nil
(list* (block-label consequent) not-p info-args))
(unless (drop-thru-p if alternative)
(vop branch node block (block-label alternative)))))))
;;; Convert an IF that isn't the DEST of a conditional template.
(defun ir2-convert-if (node block)
(declare (type ir2-block block) (type cif node))
(let* ((test (if-test node))
(test-ref (reference-tn (continuation-tn node block test) nil))
(nil-ref (reference-tn (emit-constant nil) nil)))
(setf (tn-ref-across test-ref) nil-ref)
(ir2-convert-conditional node block (template-or-lose 'if-eq)
test-ref () node t)))
;;; Return a list of primitive-types that we can pass to
;;; CONTINUATION-RESULT-TNS describing the result types we want for a
;;; template call. We duplicate here the determination of output type
;;; that was done in initially selecting the template, so we know that
;;; the types we find are allowed by the template output type
;;; restrictions.
(defun find-template-result-types (call cont template rtypes)
(declare (type combination call) (type continuation cont)
(type template template) (list rtypes))
(let* ((dtype (node-derived-type call))
(type (if (and (or (eq (template-ltn-policy template) :safe)
(policy call (= safety 0)))
(continuation-type-check cont))
(values-type-intersection
dtype
(continuation-asserted-type cont))
dtype))
(types (mapcar #'primitive-type
(if (values-type-p type)
(append (values-type-required type)
(values-type-optional type))
(list type)))))
(let ((nvals (length rtypes))
(ntypes (length types)))
(cond ((< ntypes nvals)
(append types
(make-list (- nvals ntypes)
:initial-element *backend-t-primitive-type*)))
((> ntypes nvals)
(subseq types 0 nvals))
(t
types)))))
;;; Return a list of TNs usable in a CALL to TEMPLATE delivering
;;; values to CONT. As an efficiency hack, we pick off the common case
;;; where the continuation is fixed values and has locations that
;;; satisfy the result restrictions. This can fail when there is a
;;; type check or a values count mismatch.
(defun make-template-result-tns (call cont template rtypes)
(declare (type combination call) (type continuation cont)
(type template template) (list rtypes))
(let ((2cont (continuation-info cont)))
(if (and 2cont (eq (ir2-continuation-kind 2cont) :fixed))
(let ((locs (ir2-continuation-locs 2cont)))
(if (and (= (length rtypes) (length locs))
(do ((loc locs (cdr loc))
(rtype rtypes (cdr rtype)))
((null loc) t)
(unless (operand-restriction-ok
(car rtype)
(tn-primitive-type (car loc))
:t-ok nil)
(return nil))))
locs
(continuation-result-tns
cont
(find-template-result-types call cont template rtypes))))
(continuation-result-tns
cont
(find-template-result-types call cont template rtypes)))))
;;; Get the operands into TNs, make TN-REFs for them, and then call
;;; the template emit function.
(defun ir2-convert-template (call block)
(declare (type combination call) (type ir2-block block))
(let* ((template (combination-info call))
(cont (node-cont call))
(rtypes (template-result-types template)))
(multiple-value-bind (args info-args)
(reference-args call block (combination-args call) template)
(aver (not (template-more-results-type template)))
(if (eq rtypes :conditional)
(ir2-convert-conditional call block template args info-args
(continuation-dest cont) nil)
(let* ((results (make-template-result-tns call cont template rtypes))
(r-refs (reference-tn-list results t)))
(aver (= (length info-args)
(template-info-arg-count template)))
(if info-args
(emit-template call block template args r-refs info-args)
(emit-template call block template args r-refs))
(move-continuation-result call block results cont)))))
(values))
;;; We don't have to do much because operand count checking is done by
;;; IR1 conversion. The only difference between this and the function
;;; case of IR2-CONVERT-TEMPLATE is that there can be codegen-info
;;; arguments.
(defoptimizer (%%primitive ir2-convert) ((template info &rest args) call block)
(let* ((template (continuation-value template))
(info (continuation-value info))
(cont (node-cont call))
(rtypes (template-result-types template))
(results (make-template-result-tns call cont template rtypes))
(r-refs (reference-tn-list results t)))
(multiple-value-bind (args info-args)
(reference-args call block (cddr (combination-args call)) template)
(aver (not (template-more-results-type template)))
(aver (not (eq rtypes :conditional)))
(aver (null info-args))
(if info
(emit-template call block template args r-refs info)
(emit-template call block template args r-refs))
(move-continuation-result call block results cont)))
(values))
;;;; local call
;;; Convert a LET by moving the argument values into the variables.
;;; Since a LET doesn't have any passing locations, we move the
;;; arguments directly into the variables. We must also allocate any
;;; indirect value cells, since there is no function prologue to do
;;; this.
(defun ir2-convert-let (node block fun)
(declare (type combination node) (type ir2-block block) (type clambda fun))
(mapc (lambda (var arg)
(when arg
(let ((src (continuation-tn node block arg))
(dest (leaf-info var)))
(if (lambda-var-indirect var)
(do-make-value-cell node block src dest)
(emit-move node block src dest)))))
(lambda-vars fun) (basic-combination-args node))
(values))
;;; Emit any necessary moves into assignment temps for a local call to
;;; FUN. We return two lists of TNs: TNs holding the actual argument
;;; values, and (possibly EQ) TNs that are the actual destination of
;;; the arguments. When necessary, we allocate temporaries for
;;; arguments to preserve parallel assignment semantics. These lists
;;; exclude unused arguments and include implicit environment
;;; arguments, i.e. they exactly correspond to the arguments passed.
;;;
;;; OLD-FP is the TN currently holding the value we want to pass as
;;; OLD-FP. If null, then the call is to the same environment (an
;;; :ASSIGNMENT), so we only move the arguments, and leave the
;;; environment alone.
(defun emit-psetq-moves (node block fun old-fp)
(declare (type combination node) (type ir2-block block) (type clambda fun)
(type (or tn null) old-fp))
(let ((actuals (mapcar (lambda (x)
(when x
(continuation-tn node block x)))
(combination-args node))))
(collect ((temps)
(locs))
(dolist (var (lambda-vars fun))
(let ((actual (pop actuals))
(loc (leaf-info var)))
(when actual
(cond
((lambda-var-indirect var)
(let ((temp
(make-normal-tn *backend-t-primitive-type*)))
(do-make-value-cell node block actual temp)
(temps temp)))
((member actual (locs))
(let ((temp (make-normal-tn (tn-primitive-type loc))))
(emit-move node block actual temp)
(temps temp)))
(t
(temps actual)))
(locs loc))))
(when old-fp
(let ((this-1env (node-physenv node))
(called-env (physenv-info (lambda-physenv fun))))
(dolist (thing (ir2-physenv-closure called-env))
(temps (find-in-physenv (car thing) this-1env))
(locs (cdr thing)))
(temps old-fp)
(locs (ir2-physenv-old-fp called-env))))
(values (temps) (locs)))))
;;; A tail-recursive local call is done by emitting moves of stuff
;;; into the appropriate passing locations. After setting up the args
;;; and environment, we just move our return-pc into the called
;;; function's passing location.
(defun ir2-convert-tail-local-call (node block fun)
(declare (type combination node) (type ir2-block block) (type clambda fun))
(let ((this-env (physenv-info (node-physenv node))))
(multiple-value-bind (temps locs)
(emit-psetq-moves node block fun (ir2-physenv-old-fp this-env))
(mapc (lambda (temp loc)
(emit-move node block temp loc))
temps locs))
(emit-move node block
(ir2-physenv-return-pc this-env)
(ir2-physenv-return-pc-pass
(physenv-info
(lambda-physenv fun)))))
(values))
;;; Convert an :ASSIGNMENT call. This is just like a tail local call,
;;; except that the caller and callee environment are the same, so we
;;; don't need to mess with the environment locations, return PC, etc.
(defun ir2-convert-assignment (node block fun)
(declare (type combination node) (type ir2-block block) (type clambda fun))
(multiple-value-bind (temps locs) (emit-psetq-moves node block fun nil)
(mapc (lambda (temp loc)
(emit-move node block temp loc))
temps locs))
(values))
;;; Do stuff to set up the arguments to a non-tail local call
;;; (including implicit environment args.) We allocate a frame
;;; (returning the FP and NFP), and also compute the TN-REFS list for
;;; the values to pass and the list of passing location TNs.
(defun ir2-convert-local-call-args (node block fun)
(declare (type combination node) (type ir2-block block) (type clambda fun))
(let ((fp (make-stack-pointer-tn))
(nfp (make-number-stack-pointer-tn))
(old-fp (make-stack-pointer-tn)))
(multiple-value-bind (temps locs)
(emit-psetq-moves node block fun old-fp)
(vop current-fp node block old-fp)
(vop allocate-frame node block
(physenv-info (lambda-physenv fun))
fp nfp)
(values fp nfp temps (mapcar #'make-alias-tn locs)))))
;;; Handle a non-TR known-values local call. We emit the call, then
;;; move the results to the continuation's destination.
(defun ir2-convert-local-known-call (node block fun returns cont start)
(declare (type node node) (type ir2-block block) (type clambda fun)
(type return-info returns) (type continuation cont)
(type label start))
(multiple-value-bind (fp nfp temps arg-locs)
(ir2-convert-local-call-args node block fun)
(let ((locs (return-info-locations returns)))
(vop* known-call-local node block
(fp nfp (reference-tn-list temps nil))
((reference-tn-list locs t))
arg-locs (physenv-info (lambda-physenv fun)) start)
(move-continuation-result node block locs cont)))
(values))
;;; Handle a non-TR unknown-values local call. We do different things
;;; depending on what kind of values the continuation wants.
;;;
;;; If CONT is :UNKNOWN, then we use the "multiple-" variant, directly
;;; specifying the continuation's LOCS as the VOP results so that we
;;; don't have to do anything after the call.
;;;
;;; Otherwise, we use STANDARD-RESULT-TNS to get wired result TNs, and
;;; then call MOVE-CONTINUATION-RESULT to do any necessary type checks
;;; or coercions.
(defun ir2-convert-local-unknown-call (node block fun cont start)
(declare (type node node) (type ir2-block block) (type clambda fun)
(type continuation cont) (type label start))
(multiple-value-bind (fp nfp temps arg-locs)
(ir2-convert-local-call-args node block fun)
(let ((2cont (continuation-info cont))
(env (physenv-info (lambda-physenv fun)))
(temp-refs (reference-tn-list temps nil)))
(if (and 2cont (eq (ir2-continuation-kind 2cont) :unknown))
(vop* multiple-call-local node block (fp nfp temp-refs)
((reference-tn-list (ir2-continuation-locs 2cont) t))
arg-locs env start)
(let ((locs (standard-result-tns cont)))
(vop* call-local node block
(fp nfp temp-refs)
((reference-tn-list locs t))
arg-locs env start (length locs))
(move-continuation-result node block locs cont)))))
(values))
;;; Dispatch to the appropriate function, depending on whether we have
;;; a let, tail or normal call. If the function doesn't return, call
;;; it using the unknown-value convention. We could compile it as a
;;; tail call, but that might seem confusing in the debugger.
(defun ir2-convert-local-call (node block)
(declare (type combination node) (type ir2-block block))
(let* ((fun (ref-leaf (continuation-use (basic-combination-fun node))))
(kind (functional-kind fun)))
(cond ((eq kind :let)
(ir2-convert-let node block fun))
((eq kind :assignment)
(ir2-convert-assignment node block fun))
((node-tail-p node)
(ir2-convert-tail-local-call node block fun))
(t
(let ((start (block-label (lambda-block fun)))
(returns (tail-set-info (lambda-tail-set fun)))
(cont (node-cont node)))
(ecase (if returns
(return-info-kind returns)
:unknown)
(:unknown
(ir2-convert-local-unknown-call node block fun cont start))
(:fixed
(ir2-convert-local-known-call node block fun returns
cont start)))))))
(values))
;;;; full call
;;; Given a function continuation FUN, return (VALUES TN-TO-CALL
;;; NAMED-P), where TN-TO-CALL is a TN holding the thing that we call
;;; NAMED-P is true if the thing is named (false if it is a function).
;;;
;;; There are two interesting non-named cases:
;;; -- We know it's a function. No check needed: return the
;;; continuation LOC.
;;; -- We don't know what it is.
(defun fun-continuation-tn (node block cont)
(declare (type continuation cont))
(let ((2cont (continuation-info cont)))
(if (eq (ir2-continuation-kind 2cont) :delayed)
(let ((name (continuation-fun-name cont t)))
(aver name)
(values (make-load-time-constant-tn :fdefinition name) t))
(let* ((locs (ir2-continuation-locs 2cont))
(loc (first locs))
(check (continuation-type-check cont))
(function-ptype (primitive-type-or-lose 'function)))
(aver (and (eq (ir2-continuation-kind 2cont) :fixed)
(= (length locs) 1)))
(cond ((eq (tn-primitive-type loc) function-ptype)
(aver (not (eq check t)))
(values loc nil))
(t
(let ((temp (make-normal-tn function-ptype)))
(aver (and (eq (ir2-continuation-primitive-type 2cont)
function-ptype)
(eq check t)))
(emit-type-check node block loc temp
(specifier-type 'function))
(values temp nil))))))))
;;; Set up the args to NODE in the current frame, and return a TN-REF
;;; list for the passing locations.
(defun move-tail-full-call-args (node block)
(declare (type combination node) (type ir2-block block))
(let ((args (basic-combination-args node))
(last nil)
(first nil))
(dotimes (num (length args))
(let ((loc (standard-arg-location num)))
(emit-move node block (continuation-tn node block (elt args num)) loc)
(let ((ref (reference-tn loc nil)))
(if last
(setf (tn-ref-across last) ref)
(setf first ref))
(setq last ref))))
first))
;;; Move the arguments into the passing locations and do a (possibly
;;; named) tail call.
(defun ir2-convert-tail-full-call (node block)
(declare (type combination node) (type ir2-block block))
(let* ((env (physenv-info (node-physenv node)))
(args (basic-combination-args node))
(nargs (length args))
(pass-refs (move-tail-full-call-args node block))
(old-fp (ir2-physenv-old-fp env))
(return-pc (ir2-physenv-return-pc env)))
(multiple-value-bind (fun-tn named)
(fun-continuation-tn node block (basic-combination-fun node))
(if named
(vop* tail-call-named node block
(fun-tn old-fp return-pc pass-refs)
(nil)
nargs)
(vop* tail-call node block
(fun-tn old-fp return-pc pass-refs)
(nil)
nargs))))
(values))
;;; like IR2-CONVERT-LOCAL-CALL-ARGS, only different
(defun ir2-convert-full-call-args (node block)
(declare (type combination node) (type ir2-block block))
(let* ((args (basic-combination-args node))
(fp (make-stack-pointer-tn))
(nargs (length args)))
(vop allocate-full-call-frame node block nargs fp)
(collect ((locs))
(let ((last nil)
(first nil))
(dotimes (num nargs)
(locs (standard-arg-location num))
(let ((ref (reference-tn (continuation-tn node block (elt args num))
nil)))
(if last
(setf (tn-ref-across last) ref)
(setf first ref))
(setq last ref)))
(values fp first (locs) nargs)))))
;;; Do full call when a fixed number of values are desired. We make
;;; STANDARD-RESULT-TNS for our continuation, then deliver the result
;;; using MOVE-CONTINUATION-RESULT. We do named or normal call, as
;;; appropriate.
(defun ir2-convert-fixed-full-call (node block)
(declare (type combination node) (type ir2-block block))
(multiple-value-bind (fp args arg-locs nargs)
(ir2-convert-full-call-args node block)
(let* ((cont (node-cont node))
(locs (standard-result-tns cont))
(loc-refs (reference-tn-list locs t))
(nvals (length locs)))
(multiple-value-bind (fun-tn named)
(fun-continuation-tn node block (basic-combination-fun node))
(if named
(vop* call-named node block (fp fun-tn args) (loc-refs)
arg-locs nargs nvals)
(vop* call node block (fp fun-tn args) (loc-refs)
arg-locs nargs nvals))
(move-continuation-result node block locs cont))))
(values))
;;; Do full call when unknown values are desired.
(defun ir2-convert-multiple-full-call (node block)
(declare (type combination node) (type ir2-block block))
(multiple-value-bind (fp args arg-locs nargs)
(ir2-convert-full-call-args node block)
(let* ((cont (node-cont node))
(locs (ir2-continuation-locs (continuation-info cont)))
(loc-refs (reference-tn-list locs t)))
(multiple-value-bind (fun-tn named)
(fun-continuation-tn node block (basic-combination-fun node))
(if named
(vop* multiple-call-named node block (fp fun-tn args) (loc-refs)
arg-locs nargs)
(vop* multiple-call node block (fp fun-tn args) (loc-refs)
arg-locs nargs)))))
(values))
;;; stuff to check in PONDER-FULL-CALL
;;;
;;; There are some things which are intended always to be optimized
;;; away by DEFTRANSFORMs and such, and so never compiled into full
;;; calls. This has been a source of bugs so many times that it seems
;;; worth listing some of them here so that we can check the list
;;; whenever we compile a full call.
;;;
;;; FIXME: It might be better to represent this property by setting a
;;; flag in DEFKNOWN, instead of representing it by membership in this
;;; list.
(defvar *always-optimized-away*
'(;; This should always be DEFTRANSFORMed away, but wasn't in a bug
;; reported to cmucl-imp 2000-06-20.
%instance-ref
;; These should always turn into VOPs, but wasn't in a bug which
;; appeared when LTN-POLICY stuff was being tweaked in
;; sbcl-0.6.9.16. in sbcl-0.6.0
data-vector-set
data-vector-ref))
;;; more stuff to check in PONDER-FULL-CALL
;;;
;;; These came in handy when troubleshooting cold boot after making
;;; major changes in the package structure: various transforms and
;;; VOPs and stuff got attached to the wrong symbol, so that
;;; references to the right symbol were bogusly translated as full
;;; calls instead of primitives, sending the system off into infinite
;;; space. Having a report on all full calls generated makes it easier
;;; to figure out what form caused the problem this time.
#!+sb-show (defvar *show-full-called-fnames-p* nil)
#!+sb-show (defvar *full-called-fnames* (make-hash-table :test 'equal))
;;; Do some checks (and store some notes relevant for future checks)
;;; on a full call:
;;; * Is this a full call to something we have reason to know should
;;; never be full called? (Except as of sbcl-0.7.18 or so, we no
;;; longer try to ensure this behavior when *FAILURE-P* has already
;;; been detected.)
;;; * Is this a full call to (SETF FOO) which might conflict with
;;; a DEFSETF or some such thing elsewhere in the program?
(defun ponder-full-call (node)
(let* ((cont (basic-combination-fun node))
(fname (continuation-fun-name cont t)))
(declare (type (or symbol cons) fname))
#!+sb-show (unless (gethash fname *full-called-fnames*)
(setf (gethash fname *full-called-fnames*) t))
#!+sb-show (when *show-full-called-fnames-p*
(/show "converting full call to named function" fname)
(/show (basic-combination-args node))
(/show (policy node speed) (policy node safety))
(/show (policy node compilation-speed))
(let ((arg-types (mapcar (lambda (maybe-continuation)
(when maybe-continuation
(type-specifier
(continuation-type
maybe-continuation))))
(basic-combination-args node))))
(/show arg-types)))
;; When illegal code is compiled, all sorts of perverse paths
;; through the compiler can be taken, and it's much harder -- and
;; probably pointless -- to guarantee that always-optimized-away
;; functions are actually optimized away. Thus, we skip the check
;; in that case.
(unless *failure-p*
(when (memq fname *always-optimized-away*)
(/show (policy node speed) (policy node safety))
(/show (policy node compilation-speed))
(bug "full call to ~S" fname)))
(when (consp fname)
(destructuring-bind (setfoid &rest stem) fname
(aver (member setfoid
'(setf sb!pcl::class-predicate sb!pcl::slot-accessor)))
(when (eq setfoid 'setf)
(setf (gethash (car stem) *setf-assumed-fboundp*) t))))))
;;; If the call is in a tail recursive position and the return
;;; convention is standard, then do a tail full call. If one or fewer
;;; values are desired, then use a single-value call, otherwise use a
;;; multiple-values call.
(defun ir2-convert-full-call (node block)
(declare (type combination node) (type ir2-block block))
(ponder-full-call node)
(let ((2cont (continuation-info (node-cont node))))
(cond ((node-tail-p node)
(ir2-convert-tail-full-call node block))
((and 2cont
(eq (ir2-continuation-kind 2cont) :unknown))
(ir2-convert-multiple-full-call node block))
(t
(ir2-convert-fixed-full-call node block))))
(values))
;;;; entering functions
;;; Do all the stuff that needs to be done on XEP entry:
;;; -- Create frame.
;;; -- Copy any more arg.
;;; -- Set up the environment, accessing any closure variables.
;;; -- Move args from the standard passing locations to their internal
;;; locations.
(defun init-xep-environment (node block fun)
(declare (type bind node) (type ir2-block block) (type clambda fun))
(let ((start-label (entry-info-offset (leaf-info fun)))
(env (physenv-info (node-physenv node))))
(let ((ef (functional-entry-fun fun)))
(cond ((and (optional-dispatch-p ef) (optional-dispatch-more-entry ef))
;; Special case the xep-allocate-frame + copy-more-arg case.
(vop xep-allocate-frame node block start-label t)
(vop copy-more-arg node block (optional-dispatch-max-args ef)))
(t
;; No more args, so normal entry.
(vop xep-allocate-frame node block start-label nil)))
(if (ir2-physenv-closure env)
(let ((closure (make-normal-tn *backend-t-primitive-type*)))
(vop setup-closure-environment node block start-label closure)
(when (getf (functional-plist ef) :fin-function)
(vop funcallable-instance-lexenv node block closure closure))
(let ((n -1))
(dolist (loc (ir2-physenv-closure env))
(vop closure-ref node block closure (incf n) (cdr loc)))))
(vop setup-environment node block start-label)))
(unless (eq (functional-kind fun) :toplevel)
(let ((vars (lambda-vars fun))
(n 0))
(when (leaf-refs (first vars))
(emit-move node block (make-arg-count-location)
(leaf-info (first vars))))
(dolist (arg (rest vars))
(when (leaf-refs arg)
(let ((pass (standard-arg-location n))
(home (leaf-info arg)))
(if (lambda-var-indirect arg)
(do-make-value-cell node block pass home)
(emit-move node block pass home))))
(incf n))))
(emit-move node block (make-old-fp-passing-location t)
(ir2-physenv-old-fp env)))
(values))
;;; Emit function prolog code. This is only called on bind nodes for
;;; functions that allocate environments. All semantics of let calls
;;; are handled by IR2-CONVERT-LET.
;;;
;;; If not an XEP, all we do is move the return PC from its passing
;;; location, since in a local call, the caller allocates the frame
;;; and sets up the arguments.
(defun ir2-convert-bind (node block)
(declare (type bind node) (type ir2-block block))
(let* ((fun (bind-lambda node))
(env (physenv-info (lambda-physenv fun))))
(aver (member (functional-kind fun)
'(nil :external :optional :toplevel :cleanup)))
(when (xep-p fun)
(init-xep-environment node block fun)
#!+sb-dyncount
(when *collect-dynamic-statistics*
(vop count-me node block *dynamic-counts-tn*
(block-number (ir2-block-block block)))))
(emit-move node
block
(ir2-physenv-return-pc-pass env)
(ir2-physenv-return-pc env))
(let ((lab (gen-label)))
(setf (ir2-physenv-environment-start env) lab)
(vop note-environment-start node block lab)))
(values))
;;;; function return
;;; Do stuff to return from a function with the specified values and
;;; convention. If the return convention is :FIXED and we aren't
;;; returning from an XEP, then we do a known return (letting
;;; representation selection insert the correct move-arg VOPs.)
;;; Otherwise, we use the unknown-values convention. If there is a
;;; fixed number of return values, then use RETURN, otherwise use
;;; RETURN-MULTIPLE.
(defun ir2-convert-return (node block)
(declare (type creturn node) (type ir2-block block))
(let* ((cont (return-result node))
(2cont (continuation-info cont))
(cont-kind (ir2-continuation-kind 2cont))
(fun (return-lambda node))
(env (physenv-info (lambda-physenv fun)))
(old-fp (ir2-physenv-old-fp env))
(return-pc (ir2-physenv-return-pc env))
(returns (tail-set-info (lambda-tail-set fun))))
(cond
((and (eq (return-info-kind returns) :fixed)
(not (xep-p fun)))
(let ((locs (continuation-tns node block cont
(return-info-types returns))))
(vop* known-return node block
(old-fp return-pc (reference-tn-list locs nil))
(nil)
(return-info-locations returns))))
((eq cont-kind :fixed)
(let* ((types (mapcar #'tn-primitive-type (ir2-continuation-locs 2cont)))
(cont-locs (continuation-tns node block cont types))
(nvals (length cont-locs))
(locs (make-standard-value-tns nvals)))
(mapc (lambda (val loc)
(emit-move node block val loc))
cont-locs
locs)
(if (= nvals 1)
(vop return-single node block old-fp return-pc (car locs))
(vop* return node block
(old-fp return-pc (reference-tn-list locs nil))
(nil)
nvals))))
(t
(aver (eq cont-kind :unknown))
(vop* return-multiple node block
(old-fp return-pc
(reference-tn-list (ir2-continuation-locs 2cont) nil))
(nil)))))
(values))
;;;; debugger hooks
;;; This is used by the debugger to find the top function on the
;;; stack. It returns the OLD-FP and RETURN-PC for the current
;;; function as multiple values.
(defoptimizer (sb!kernel:%caller-frame-and-pc ir2-convert) (() node block)
(let ((ir2-physenv (physenv-info (node-physenv node))))
(move-continuation-result node block
(list (ir2-physenv-old-fp ir2-physenv)
(ir2-physenv-return-pc ir2-physenv))
(node-cont node))))
;;;; multiple values
;;; This is almost identical to IR2-CONVERT-LET. Since LTN annotates
;;; the continuation for the correct number of values (with the
;;; continuation user responsible for defaulting), we can just pick
;;; them up from the continuation.
(defun ir2-convert-mv-bind (node block)
(declare (type mv-combination node) (type ir2-block block))
(let* ((cont (first (basic-combination-args node)))
(fun (ref-leaf (continuation-use (basic-combination-fun node))))
(vars (lambda-vars fun)))
(aver (eq (functional-kind fun) :mv-let))
(mapc (lambda (src var)
(when (leaf-refs var)
(let ((dest (leaf-info var)))
(if (lambda-var-indirect var)
(do-make-value-cell node block src dest)
(emit-move node block src dest)))))
(continuation-tns node block cont
(mapcar (lambda (x)
(primitive-type (leaf-type x)))
vars))
vars))
(values))
;;; Emit the appropriate fixed value, unknown value or tail variant of
;;; CALL-VARIABLE. Note that we only need to pass the values start for
;;; the first argument: all the other argument continuation TNs are
;;; ignored. This is because we require all of the values globs to be
;;; contiguous and on stack top.
(defun ir2-convert-mv-call (node block)
(declare (type mv-combination node) (type ir2-block block))
(aver (basic-combination-args node))
(let* ((start-cont (continuation-info (first (basic-combination-args node))))
(start (first (ir2-continuation-locs start-cont)))
(tails (and (node-tail-p node)
(lambda-tail-set (node-home-lambda node))))
(cont (node-cont node))
(2cont (continuation-info cont)))
(multiple-value-bind (fun named)
(fun-continuation-tn node block (basic-combination-fun node))
(aver (and (not named)
(eq (ir2-continuation-kind start-cont) :unknown)))
(cond
(tails
(let ((env (physenv-info (node-physenv node))))
(vop tail-call-variable node block start fun
(ir2-physenv-old-fp env)
(ir2-physenv-return-pc env))))
((and 2cont
(eq (ir2-continuation-kind 2cont) :unknown))
(vop* multiple-call-variable node block (start fun nil)
((reference-tn-list (ir2-continuation-locs 2cont) t))))
(t
(let ((locs (standard-result-tns cont)))
(vop* call-variable node block (start fun nil)
((reference-tn-list locs t)) (length locs))
(move-continuation-result node block locs cont)))))))
;;; Reset the stack pointer to the start of the specified
;;; unknown-values continuation (discarding it and all values globs on
;;; top of it.)
(defoptimizer (%pop-values ir2-convert) ((continuation) node block)
(let ((2cont (continuation-info (continuation-value continuation))))
(aver (eq (ir2-continuation-kind 2cont) :unknown))
(vop reset-stack-pointer node block
(first (ir2-continuation-locs 2cont)))))
;;; Deliver the values TNs to CONT using MOVE-CONTINUATION-RESULT.
(defoptimizer (values ir2-convert) ((&rest values) node block)
(let ((tns (mapcar (lambda (x)
(continuation-tn node block x))
values)))
(move-continuation-result node block tns (node-cont node))))
;;; In the normal case where unknown values are desired, we use the
;;; VALUES-LIST VOP. In the relatively unimportant case of VALUES-LIST
;;; for a fixed number of values, we punt by doing a full call to the
;;; VALUES-LIST function. This gets the full call VOP to deal with
;;; defaulting any unsupplied values. It seems unworthwhile to
;;; optimize this case.
(defoptimizer (values-list ir2-convert) ((list) node block)
(let* ((cont (node-cont node))
(2cont (continuation-info cont)))
(cond ((and 2cont
(eq (ir2-continuation-kind 2cont) :unknown))
(let ((locs (ir2-continuation-locs 2cont)))
(vop* values-list node block
((continuation-tn node block list) nil)
((reference-tn-list locs t)))))
(t (aver (or (not 2cont) ; i.e. we want to check the argument
(eq (ir2-continuation-kind 2cont) :fixed)))
(ir2-convert-full-call node block)))))
(defoptimizer (%more-arg-values ir2-convert) ((context start count) node block)
(let* ((cont (node-cont node))
(2cont (continuation-info cont)))
(when 2cont
(ecase (ir2-continuation-kind 2cont)
(:fixed (ir2-convert-full-call node block))
(:unknown
(let ((locs (ir2-continuation-locs 2cont)))
(vop* %more-arg-values node block
((continuation-tn node block context)
(continuation-tn node block start)
(continuation-tn node block count)
nil)
((reference-tn-list locs t)))))))))
;;;; special binding
;;; This is trivial, given our assumption of a shallow-binding
;;; implementation.
(defoptimizer (%special-bind ir2-convert) ((var value) node block)
(let ((name (leaf-source-name (continuation-value var))))
(vop bind node block (continuation-tn node block value)
(emit-constant name))))
(defoptimizer (%special-unbind ir2-convert) ((var) node block)
(vop unbind node block))
;;; ### It's not clear that this really belongs in this file, or
;;; should really be done this way, but this is the least violation of
;;; abstraction in the current setup. We don't want to wire
;;; shallow-binding assumptions into IR1tran.
(def-ir1-translator progv ((vars vals &body body) start cont)
(ir1-convert
start cont
(let ((bind (gensym "BIND"))
(unbind (gensym "UNBIND")))
(once-only ((n-save-bs '(%primitive current-binding-pointer)))
`(unwind-protect
(progn
(labels ((,unbind (vars)
(declare (optimize (speed 2) (debug 0)))
(dolist (var vars)
(%primitive bind nil var)
(makunbound var)))
(,bind (vars vals)
(declare (optimize (speed 2) (debug 0)))
(cond ((null vars))
((null vals) (,unbind vars))
(t (%primitive bind (car vals) (car vars))
(,bind (cdr vars) (cdr vals))))))
(,bind ,vars ,vals))
nil
,@body)
(%primitive unbind-to-here ,n-save-bs))))))
;;;; non-local exit
;;; Convert a non-local lexical exit. First find the NLX-INFO in our
;;; environment. Note that this is never called on the escape exits
;;; for CATCH and UNWIND-PROTECT, since the escape functions aren't
;;; IR2 converted.
(defun ir2-convert-exit (node block)
(declare (type exit node) (type ir2-block block))
(let ((loc (find-in-physenv (find-nlx-info (exit-entry node)
(node-cont node))
(node-physenv node)))
(temp (make-stack-pointer-tn))
(value (exit-value node)))
(vop value-cell-ref node block loc temp)
(if value
(let ((locs (ir2-continuation-locs (continuation-info value))))
(vop unwind node block temp (first locs) (second locs)))
(let ((0-tn (emit-constant 0)))
(vop unwind node block temp 0-tn 0-tn))))
(values))
;;; %CLEANUP-POINT doesn't do anything except prevent the body from
;;; being entirely deleted.
(defoptimizer (%cleanup-point ir2-convert) (() node block) node block)
;;; This function invalidates a lexical exit on exiting from the
;;; dynamic extent. This is done by storing 0 into the indirect value
;;; cell that holds the closed unwind block.
(defoptimizer (%lexical-exit-breakup ir2-convert) ((info) node block)
(vop value-cell-set node block
(find-in-physenv (continuation-value info) (node-physenv node))
(emit-constant 0)))
;;; We have to do a spurious move of no values to the result
;;; continuation so that lifetime analysis won't get confused.
(defun ir2-convert-throw (node block)
(declare (type mv-combination node) (type ir2-block block))
(let ((args (basic-combination-args node)))
(check-catch-tag-type (first args))
(vop* throw node block
((continuation-tn node block (first args))
(reference-tn-list
(ir2-continuation-locs (continuation-info (second args)))
nil))
(nil)))
(move-continuation-result node block () (node-cont node))
(values))
;;; Emit code to set up a non-local exit. INFO is the NLX-INFO for the
;;; exit, and TAG is the continuation for the catch tag (if any.) We
;;; get at the target PC by passing in the label to the vop. The vop
;;; is responsible for building a return-PC object.
(defun emit-nlx-start (node block info tag)
(declare (type node node) (type ir2-block block) (type nlx-info info)
(type (or continuation null) tag))
(let* ((2info (nlx-info-info info))
(kind (cleanup-kind (nlx-info-cleanup info)))
(block-tn (physenv-live-tn
(make-normal-tn (primitive-type-or-lose 'catch-block))
(node-physenv node)))
(res (make-stack-pointer-tn))
(target-label (ir2-nlx-info-target 2info)))
(vop current-binding-pointer node block
(car (ir2-nlx-info-dynamic-state 2info)))
(vop* save-dynamic-state node block
(nil)
((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) t)))
(vop current-stack-pointer node block (ir2-nlx-info-save-sp 2info))
(ecase kind
(:catch
(vop make-catch-block node block block-tn
(continuation-tn node block tag) target-label res))
((:unwind-protect :block :tagbody)
(vop make-unwind-block node block block-tn target-label res)))
(ecase kind
((:block :tagbody)
(do-make-value-cell node block res (ir2-nlx-info-home 2info)))
(:unwind-protect
(vop set-unwind-protect node block block-tn))
(:catch)))
(values))
;;; Scan each of ENTRY's exits, setting up the exit for each lexical exit.
(defun ir2-convert-entry (node block)
(declare (type entry node) (type ir2-block block))
(dolist (exit (entry-exits node))
(let ((info (find-nlx-info node (node-cont exit))))
(when (and info
(member (cleanup-kind (nlx-info-cleanup info))
'(:block :tagbody)))
(emit-nlx-start node block info nil))))
(values))
;;; Set up the unwind block for these guys.
(defoptimizer (%catch ir2-convert) ((info-cont tag) node block)
(check-catch-tag-type tag)
(emit-nlx-start node block (continuation-value info-cont) tag))
(defoptimizer (%unwind-protect ir2-convert) ((info-cont cleanup) node block)
(emit-nlx-start node block (continuation-value info-cont) nil))
;;; Emit the entry code for a non-local exit. We receive values and
;;; restore dynamic state.
;;;
;;; In the case of a lexical exit or CATCH, we look at the exit
;;; continuation's kind to determine which flavor of entry VOP to
;;; emit. If unknown values, emit the xxx-MULTIPLE variant to the
;;; continuation locs. If fixed values, make the appropriate number of
;;; temps in the standard values locations and use the other variant,
;;; delivering the temps to the continuation using
;;; MOVE-CONTINUATION-RESULT.
;;;
;;; In the UNWIND-PROTECT case, we deliver the first register
;;; argument, the argument count and the argument pointer to our
;;; continuation as multiple values. These values are the block exited
;;; to and the values start and count.
;;;
;;; After receiving values, we restore dynamic state. Except in the
;;; UNWIND-PROTECT case, the values receiving restores the stack
;;; pointer. In an UNWIND-PROTECT cleanup, we want to leave the stack
;;; pointer alone, since the thrown values are still out there.
(defoptimizer (%nlx-entry ir2-convert) ((info-cont) node block)
(let* ((info (continuation-value info-cont))
(cont (nlx-info-continuation info))
(2cont (continuation-info cont))
(2info (nlx-info-info info))
(top-loc (ir2-nlx-info-save-sp 2info))
(start-loc (make-nlx-entry-arg-start-location))
(count-loc (make-arg-count-location))
(target (ir2-nlx-info-target 2info)))
(ecase (cleanup-kind (nlx-info-cleanup info))
((:catch :block :tagbody)
(if (and 2cont (eq (ir2-continuation-kind 2cont) :unknown))
(vop* nlx-entry-multiple node block
(top-loc start-loc count-loc nil)
((reference-tn-list (ir2-continuation-locs 2cont) t))
target)
(let ((locs (standard-result-tns cont)))
(vop* nlx-entry node block
(top-loc start-loc count-loc nil)
((reference-tn-list locs t))
target
(length locs))
(move-continuation-result node block locs cont))))
(:unwind-protect
(let ((block-loc (standard-arg-location 0)))
(vop uwp-entry node block target block-loc start-loc count-loc)
(move-continuation-result
node block
(list block-loc start-loc count-loc)
cont))))
#!+sb-dyncount
(when *collect-dynamic-statistics*
(vop count-me node block *dynamic-counts-tn*
(block-number (ir2-block-block block))))
(vop* restore-dynamic-state node block
((reference-tn-list (cdr (ir2-nlx-info-dynamic-state 2info)) nil))
(nil))
(vop unbind-to-here node block
(car (ir2-nlx-info-dynamic-state 2info)))))
;;;; n-argument functions
(macrolet ((def (name)
`(defoptimizer (,name ir2-convert) ((&rest args) node block)
(let* ((refs (move-tail-full-call-args node block))
(cont (node-cont node))
(res (continuation-result-tns
cont
(list (primitive-type (specifier-type 'list))))))
(vop* ,name node block (refs) ((first res) nil)
(length args))
(move-continuation-result node block res cont)))))
(def list)
(def list*))
;;; Convert the code in a component into VOPs.
(defun ir2-convert (component)
(declare (type component component))
(let (#!+sb-dyncount
(*dynamic-counts-tn*
(when *collect-dynamic-statistics*
(let* ((blocks
(block-number (block-next (component-head component))))
(counts (make-array blocks
:element-type '(unsigned-byte 32)
:initial-element 0))
(info (make-dyncount-info
:for (component-name component)
:costs (make-array blocks
:element-type '(unsigned-byte 32)
:initial-element 0)
:counts counts)))
(setf (ir2-component-dyncount-info (component-info component))
info)
(emit-constant info)
(emit-constant counts)))))
(let ((num 0))
(declare (type index num))
(do-ir2-blocks (2block component)
(let ((block (ir2-block-block 2block)))
(when (block-start block)
(setf (block-number block) num)
#!+sb-dyncount
(when *collect-dynamic-statistics*
(let ((first-node (continuation-next (block-start block))))
(unless (or (and (bind-p first-node)
(xep-p (bind-lambda first-node)))
(eq (continuation-fun-name
(node-cont first-node))
'%nlx-entry))
(vop count-me
first-node
2block
#!+sb-dyncount *dynamic-counts-tn* #!-sb-dyncount nil
num))))
(ir2-convert-block block)
(incf num))))))
(values))
;;; If necessary, emit a terminal unconditional branch to go to the
;;; successor block. If the successor is the component tail, then
;;; there isn't really any successor, but if the end is an unknown,
;;; non-tail call, then we emit an error trap just in case the
;;; function really does return.
(defun finish-ir2-block (block)
(declare (type cblock block))
(let* ((2block (block-info block))
(last (block-last block))
(succ (block-succ block)))
(unless (if-p last)
(aver (and succ (null (rest succ))))
(let ((target (first succ)))
(cond ((eq target (component-tail (block-component block)))
(when (and (basic-combination-p last)
(eq (basic-combination-kind last) :full))
(let* ((fun (basic-combination-fun last))
(use (continuation-use fun))
(name (and (ref-p use)
(leaf-has-source-name-p (ref-leaf use))
(leaf-source-name (ref-leaf use)))))
(unless (or (node-tail-p last)
(info :function :info name)
(policy last (zerop safety)))
(vop nil-fun-returned-error last 2block
(if name
(emit-constant name)
(multiple-value-bind (tn named)
(fun-continuation-tn last 2block fun)
(aver (not named))
tn)))))))
((not (eq (ir2-block-next 2block) (block-info target)))
(vop branch last 2block (block-label target)))))))
(values))
;;; Convert the code in a block into VOPs.
(defun ir2-convert-block (block)
(declare (type cblock block))
(let ((2block (block-info block)))
(do-nodes (node cont block)
(etypecase node
(ref
(let ((2cont (continuation-info cont)))
(when (and 2cont
(not (eq (ir2-continuation-kind 2cont) :delayed)))
(ir2-convert-ref node 2block))))
(combination
(let ((kind (basic-combination-kind node)))
(case kind
(:local
(ir2-convert-local-call node 2block))
(:full
(ir2-convert-full-call node 2block))
(t
(let ((fun (fun-info-ir2-convert kind)))
(cond (fun
(funcall fun node 2block))
((eq (basic-combination-info node) :full)
(ir2-convert-full-call node 2block))
(t
(ir2-convert-template node 2block))))))))
(cif
(when (continuation-info (if-test node))
(ir2-convert-if node 2block)))
(bind
(let ((fun (bind-lambda node)))
(when (eq (lambda-home fun) fun)
(ir2-convert-bind node 2block))))
(creturn
(ir2-convert-return node 2block))
(cset
(ir2-convert-set node 2block))
(mv-combination
(cond
((eq (basic-combination-kind node) :local)
(ir2-convert-mv-bind node 2block))
((eq (continuation-fun-name (basic-combination-fun node))
'%throw)
(ir2-convert-throw node 2block))
(t
(ir2-convert-mv-call node 2block))))
(exit
(when (exit-entry node)
(ir2-convert-exit node 2block)))
(entry
(ir2-convert-entry node 2block)))))
(finish-ir2-block block)
(values))