[41cb42]: src / code / seq.lisp Maximize Restore History

Download this file

seq.lisp    2624 lines (2410 with data), 109.8 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
;;;; generic SEQUENCEs
;;;;
;;;; KLUDGE: comment from original CMU CL source:
;;;; Be careful when modifying code. A lot of the structure of the
;;;; code is affected by the fact that compiler transforms use the
;;;; lower level support functions. If transforms are written for
;;;; some sequence operation, note how the END argument is handled
;;;; in other operations with transforms.
;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; This software is derived from the CMU CL system, which was
;;;; written at Carnegie Mellon University and released into the
;;;; public domain. The software is in the public domain and is
;;;; provided with absolutely no warranty. See the COPYING and CREDITS
;;;; files for more information.
(in-package "SB!IMPL")
;;;; utilities
(defun %check-generic-sequence-bounds (seq start end)
(let ((length (sb!sequence:length seq)))
(if (<= 0 start (or end length) length)
(or end length)
(sequence-bounding-indices-bad-error seq start end))))
(eval-when (:compile-toplevel :load-toplevel :execute)
(defparameter *sequence-keyword-info*
;; (name default supplied-p adjustment new-type)
`((count nil
nil
(etypecase count
(null (1- most-positive-fixnum))
(fixnum (max 0 count))
(integer (if (minusp count)
0
(1- most-positive-fixnum))))
(mod #.sb!xc:most-positive-fixnum))
,@(mapcan (lambda (names)
(destructuring-bind (start end length sequence) names
(list
`(,start
0
nil
(if (<= 0 ,start ,length)
,start
(sequence-bounding-indices-bad-error ,sequence ,start ,end))
index)
`(,end
nil
nil
(if (or (null ,end) (<= ,start ,end ,length))
;; Defaulting of NIL is done inside the
;; bodies, for ease of sharing with compiler
;; transforms.
;;
;; FIXME: defend against non-number non-NIL
;; stuff?
,end
(sequence-bounding-indices-bad-error ,sequence ,start ,end))
(or null index)))))
'((start end length sequence)
(start1 end1 length1 sequence1)
(start2 end2 length2 sequence2)))
(key nil
nil
(and key (%coerce-callable-to-fun key))
(or null function))
(test #'eql
nil
(%coerce-callable-to-fun test)
function)
(test-not nil
nil
(and test-not (%coerce-callable-to-fun test-not))
(or null function))
))
(sb!xc:defmacro define-sequence-traverser (name args &body body)
(multiple-value-bind (body declarations docstring)
(parse-body body :doc-string-allowed t)
(collect ((new-args) (new-declarations) (adjustments))
(dolist (arg args)
(case arg
;; FIXME: make this robust. And clean.
((sequence)
(new-args arg)
(adjustments '(length (length sequence)))
(new-declarations '(type index length)))
((sequence1)
(new-args arg)
(adjustments '(length1 (length sequence1)))
(new-declarations '(type index length1)))
((sequence2)
(new-args arg)
(adjustments '(length2 (length sequence2)))
(new-declarations '(type index length2)))
((function predicate)
(new-args arg)
(adjustments `(,arg (%coerce-callable-to-fun ,arg))))
(t (let ((info (cdr (assoc arg *sequence-keyword-info*))))
(cond (info
(destructuring-bind (default supplied-p adjuster type) info
(new-args `(,arg ,default ,@(when supplied-p (list supplied-p))))
(adjustments `(,arg ,adjuster))
(new-declarations `(type ,type ,arg))))
(t (new-args arg)))))))
`(defun ,name ,(new-args)
,@(when docstring (list docstring))
,@declarations
(let* (,@(adjustments))
(declare ,@(new-declarations))
,@body)))))
;;; SEQ-DISPATCH does an efficient type-dispatch on the given SEQUENCE.
;;;
;;; FIXME: It might be worth making three cases here, LIST,
;;; SIMPLE-VECTOR, and VECTOR, instead of the current LIST and VECTOR.
;;; It tends to make code run faster but be bigger; some benchmarking
;;; is needed to decide.
(sb!xc:defmacro seq-dispatch
(sequence list-form array-form &optional other-form)
`(if (listp ,sequence)
(let ((,sequence (truly-the list ,sequence)))
(declare (ignorable ,sequence))
,list-form)
,@(if other-form
`((if (arrayp ,sequence)
(let ((,sequence (truly-the vector ,sequence)))
(declare (ignorable ,sequence))
,array-form)
,other-form))
`((let ((,sequence (truly-the vector ,sequence)))
(declare (ignorable ,sequence))
,array-form)))))
(sb!xc:defmacro %make-sequence-like (sequence length)
#!+sb-doc
"Return a sequence of the same type as SEQUENCE and the given LENGTH."
`(seq-dispatch ,sequence
(make-list ,length)
(make-array ,length :element-type (array-element-type ,sequence))
(sb!sequence:make-sequence-like ,sequence ,length)))
(sb!xc:defmacro bad-sequence-type-error (type-spec)
`(error 'simple-type-error
:datum ,type-spec
:expected-type '(satisfies is-a-valid-sequence-type-specifier-p)
:format-control "~S is a bad type specifier for sequences."
:format-arguments (list ,type-spec)))
(sb!xc:defmacro sequence-type-length-mismatch-error (type length)
`(error 'simple-type-error
:datum ,length
:expected-type (cond ((array-type-p ,type)
`(eql ,(car (array-type-dimensions ,type))))
((type= ,type (specifier-type 'null))
'(eql 0))
((cons-type-p ,type)
'(integer 1))
(t (bug "weird type in S-T-L-M-ERROR")))
;; FIXME: this format control causes ugly printing. There's
;; probably some ~<~@:_~> incantation that would make it
;; nicer. -- CSR, 2002-10-18
:format-control "The length requested (~S) does not match the type restriction in ~S."
:format-arguments (list ,length (type-specifier ,type))))
(sb!xc:defmacro sequence-type-too-hairy (type-spec)
;; FIXME: Should this be a BUG? I'm inclined to think not; there are
;; words that give some but not total support to this position in
;; ANSI. Essentially, we are justified in throwing this on
;; e.g. '(OR SIMPLE-VECTOR (VECTOR FIXNUM)), but maybe not (by ANSI)
;; on '(CONS * (CONS * NULL)) -- CSR, 2002-10-18
;; On the other hand, I'm not sure it deserves to be a type-error,
;; either. -- bem, 2005-08-10
`(error 'simple-program-error
:format-control "~S is too hairy for sequence functions."
:format-arguments (list ,type-spec)))
) ; EVAL-WHEN
(defun is-a-valid-sequence-type-specifier-p (type)
(let ((type (specifier-type type)))
(or (csubtypep type (specifier-type 'list))
(csubtypep type (specifier-type 'vector)))))
;;; It's possible with some sequence operations to declare the length
;;; of a result vector, and to be safe, we really ought to verify that
;;; the actual result has the declared length.
(defun vector-of-checked-length-given-length (vector declared-length)
(declare (type vector vector))
(declare (type index declared-length))
(let ((actual-length (length vector)))
(unless (= actual-length declared-length)
(error 'simple-type-error
:datum vector
:expected-type `(vector ,declared-length)
:format-control
"Vector length (~W) doesn't match declared length (~W)."
:format-arguments (list actual-length declared-length))))
vector)
(defun sequence-of-checked-length-given-type (sequence result-type)
(let ((ctype (specifier-type result-type)))
(if (not (array-type-p ctype))
sequence
(let ((declared-length (first (array-type-dimensions ctype))))
(if (eq declared-length '*)
sequence
(vector-of-checked-length-given-length sequence
declared-length))))))
(declaim (ftype (function (sequence index) nil) signal-index-too-large-error))
(defun signal-index-too-large-error (sequence index)
(let* ((length (length sequence))
(max-index (and (plusp length)
(1- length))))
(error 'index-too-large-error
:datum index
:expected-type (if max-index
`(integer 0 ,max-index)
;; This seems silly, is there something better?
'(integer 0 (0))))))
(declaim (ftype (function (t t t) nil) sequence-bounding-indices-bad-error))
(defun sequence-bounding-indices-bad-error (sequence start end)
(let ((size (length sequence)))
(error 'bounding-indices-bad-error
:datum (cons start end)
:expected-type `(cons (integer 0 ,size)
(integer ,start ,size))
:object sequence)))
(declaim (ftype (function (t t t) nil) array-bounding-indices-bad-error))
(defun array-bounding-indices-bad-error (array start end)
(let ((size (array-total-size array)))
(error 'bounding-indices-bad-error
:datum (cons start end)
:expected-type `(cons (integer 0 ,size)
(integer ,start ,size))
:object array)))
(declaim (ftype (function (t) nil) circular-list-error))
(defun circular-list-error (list)
(let ((*print-circle* t))
(error 'simple-type-error
:format-control "List is circular:~% ~S"
:format-arguments (list list)
:datum list
:type '(and list (satisfies list-length)))))
(defun elt (sequence index)
#!+sb-doc "Return the element of SEQUENCE specified by INDEX."
(seq-dispatch sequence
(do ((count index (1- count))
(list sequence (cdr list)))
((= count 0)
(if (endp list)
(signal-index-too-large-error sequence index)
(car list)))
(declare (type (integer 0) count)))
(progn
(when (>= index (length sequence))
(signal-index-too-large-error sequence index))
(aref sequence index))
(sb!sequence:elt sequence index)))
(defun %setelt (sequence index newval)
#!+sb-doc "Store NEWVAL as the component of SEQUENCE specified by INDEX."
(seq-dispatch sequence
(do ((count index (1- count))
(seq sequence))
((= count 0) (rplaca seq newval) newval)
(declare (fixnum count))
(if (atom (cdr seq))
(signal-index-too-large-error sequence index)
(setq seq (cdr seq))))
(progn
(when (>= index (length sequence))
(signal-index-too-large-error sequence index))
(setf (aref sequence index) newval))
(setf (sb!sequence:elt sequence index) newval)))
(defun length (sequence)
#!+sb-doc "Return an integer that is the length of SEQUENCE."
(seq-dispatch sequence
(length sequence)
(length sequence)
(sb!sequence:length sequence)))
(defun make-sequence (type length &key (initial-element nil iep))
#!+sb-doc
"Return a sequence of the given TYPE and LENGTH, with elements initialized
to INITIAL-ELEMENT."
(declare (fixnum length))
(let* ((expanded-type (typexpand type))
(adjusted-type
(typecase expanded-type
(atom (cond
((eq expanded-type 'string) '(vector character))
((eq expanded-type 'simple-string) '(simple-array character (*)))
(t type)))
(cons (cond
((eq (car expanded-type) 'string) `(vector character ,@(cdr expanded-type)))
((eq (car expanded-type) 'simple-string)
`(simple-array character ,(if (cdr expanded-type)
(cdr expanded-type)
'(*))))
(t type)))
(t type)))
(type (specifier-type adjusted-type)))
(cond ((csubtypep type (specifier-type 'list))
(cond
((type= type (specifier-type 'list))
(make-list length :initial-element initial-element))
((eq type *empty-type*)
(bad-sequence-type-error nil))
((type= type (specifier-type 'null))
(if (= length 0)
'nil
(sequence-type-length-mismatch-error type length)))
((cons-type-p type)
(multiple-value-bind (min exactp)
(sb!kernel::cons-type-length-info type)
(if exactp
(unless (= length min)
(sequence-type-length-mismatch-error type length))
(unless (>= length min)
(sequence-type-length-mismatch-error type length)))
(make-list length :initial-element initial-element)))
;; We'll get here for e.g. (OR NULL (CONS INTEGER *)),
;; which may seem strange and non-ideal, but then I'd say
;; it was stranger to feed that type in to MAKE-SEQUENCE.
(t (sequence-type-too-hairy (type-specifier type)))))
((csubtypep type (specifier-type 'vector))
(cond
(;; is it immediately obvious what the result type is?
(typep type 'array-type)
(progn
(aver (= (length (array-type-dimensions type)) 1))
(let* ((etype (type-specifier
(array-type-specialized-element-type type)))
(etype (if (eq etype '*) t etype))
(type-length (car (array-type-dimensions type))))
(unless (or (eq type-length '*)
(= type-length length))
(sequence-type-length-mismatch-error type length))
;; FIXME: These calls to MAKE-ARRAY can't be
;; open-coded, as the :ELEMENT-TYPE argument isn't
;; constant. Probably we ought to write a
;; DEFTRANSFORM for MAKE-SEQUENCE. -- CSR,
;; 2002-07-22
(if iep
(make-array length :element-type etype
:initial-element initial-element)
(make-array length :element-type etype)))))
(t (sequence-type-too-hairy (type-specifier type)))))
((and (csubtypep type (specifier-type 'sequence))
(find-class adjusted-type nil))
(let* ((class (find-class adjusted-type nil)))
(unless (sb!mop:class-finalized-p class)
(sb!mop:finalize-inheritance class))
(if iep
(sb!sequence:make-sequence-like
(sb!mop:class-prototype class) length
:initial-element initial-element)
(sb!sequence:make-sequence-like
(sb!mop:class-prototype class) length))))
(t (bad-sequence-type-error (type-specifier type))))))
;;;; SUBSEQ
;;;;
;;;; The support routines for SUBSEQ are used by compiler transforms,
;;;; so we worry about dealing with END being supplied or defaulting
;;;; to NIL at this level.
(defun vector-subseq* (sequence start end)
(declare (type vector sequence))
(declare (type index start)
(type (or null index) end)
(optimize speed))
(with-array-data ((data sequence)
(start start)
(end end)
:check-fill-pointer t
:force-inline t)
(funcall (!find-vector-subseq-fun data) data start end)))
(defun list-subseq* (sequence start end)
(declare (type list sequence)
(type unsigned-byte start)
(type (or null unsigned-byte) end))
(flet ((oops ()
(sequence-bounding-indices-bad-error sequence start end)))
(let ((pointer sequence))
(unless (zerop start)
;; If START > 0 the list cannot be empty. So CDR down to
;; it START-1 times, check that we still have something, then
;; CDR the final time.
;;
;; If START was zero, the list may be empty if END is NIL or
;; also zero.
(when (> start 1)
(setf pointer (nthcdr (1- start) pointer)))
(if pointer
(pop pointer)
(oops)))
(if end
(let ((n (- end start)))
(declare (integer n))
(when (minusp n)
(oops))
(when (plusp n)
(let* ((head (list nil))
(tail head))
(macrolet ((pop-one ()
`(let ((tmp (list (pop pointer))))
(setf (cdr tail) tmp
tail tmp))))
;; Bignum case
(loop until (fixnump n)
do (pop-one)
(decf n))
;; Fixnum case, but leave last element, so we should
;; still have something left in the sequence.
(let ((m (1- n)))
(declare (fixnum m))
(loop repeat m
do (pop-one)))
(unless pointer
(oops))
;; OK, pop the last one.
(pop-one)
(cdr head)))))
(loop while pointer
collect (pop pointer))))))
(defun subseq (sequence start &optional end)
#!+sb-doc
"Return a copy of a subsequence of SEQUENCE starting with element number
START and continuing to the end of SEQUENCE or the optional END."
(seq-dispatch sequence
(list-subseq* sequence start end)
(vector-subseq* sequence start end)
(sb!sequence:subseq sequence start end)))
;;;; COPY-SEQ
(defun copy-seq (sequence)
#!+sb-doc "Return a copy of SEQUENCE which is EQUAL to SEQUENCE but not EQ."
(seq-dispatch sequence
(list-copy-seq* sequence)
(vector-subseq* sequence 0 nil)
(sb!sequence:copy-seq sequence)))
(defun list-copy-seq* (sequence)
(!copy-list-macro sequence :check-proper-list t))
;;;; FILL
(defun list-fill* (sequence item start end)
(declare (type list sequence)
(type unsigned-byte start)
(type (or null unsigned-byte) end))
(flet ((oops ()
(sequence-bounding-indices-bad-error sequence start end)))
(let ((pointer sequence))
(unless (zerop start)
;; If START > 0 the list cannot be empty. So CDR down to it
;; START-1 times, check that we still have something, then CDR
;; the final time.
;;
;; If START was zero, the list may be empty if END is NIL or
;; also zero.
(unless (= start 1)
(setf pointer (nthcdr (1- start) pointer)))
(if pointer
(pop pointer)
(oops)))
(if end
(let ((n (- end start)))
(declare (integer n))
(when (minusp n)
(oops))
(when (plusp n)
(loop repeat n
do (setf pointer (cdr (rplaca pointer item))))))
(loop while pointer
do (setf pointer (cdr (rplaca pointer item)))))))
sequence)
(defun vector-fill* (sequence item start end)
(with-array-data ((data sequence)
(start start)
(end end)
:force-inline t
:check-fill-pointer t)
(let ((setter (!find-data-vector-setter data)))
(declare (optimize (speed 3) (safety 0)))
(do ((index start (1+ index)))
((= index end) sequence)
(declare (index index))
(funcall setter data index item)))))
(defun string-fill* (sequence item start end)
(declare (string sequence))
(with-array-data ((data sequence)
(start start)
(end end)
:force-inline t
:check-fill-pointer t)
;; DEFTRANSFORM for FILL will turn these into
;; calls to UB*-BASH-FILL.
(etypecase data
#!+sb-unicode
((simple-array character (*))
(let ((item (locally (declare (optimize (safety 3)))
(the character item))))
(fill data item :start start :end end)))
((simple-array base-char (*))
(let ((item (locally (declare (optimize (safety 3)))
(the base-char item))))
(fill data item :start start :end end))))))
(defun fill (sequence item &key (start 0) end)
#!+sb-doc
"Replace the specified elements of SEQUENCE with ITEM."
(seq-dispatch sequence
(list-fill* sequence item start end)
(vector-fill* sequence item start end)
(sb!sequence:fill sequence item
:start start
:end (%check-generic-sequence-bounds sequence start end))))
;;;; REPLACE
(eval-when (:compile-toplevel :execute)
;;; If we are copying around in the same vector, be careful not to copy the
;;; same elements over repeatedly. We do this by copying backwards.
(sb!xc:defmacro mumble-replace-from-mumble ()
`(if (and (eq target-sequence source-sequence) (> target-start source-start))
(let ((nelts (min (- target-end target-start)
(- source-end source-start))))
(do ((target-index (+ (the fixnum target-start) (the fixnum nelts) -1)
(1- target-index))
(source-index (+ (the fixnum source-start) (the fixnum nelts) -1)
(1- source-index)))
((= target-index (the fixnum (1- target-start))) target-sequence)
(declare (fixnum target-index source-index))
;; disable bounds checking
(declare (optimize (safety 0)))
(setf (aref target-sequence target-index)
(aref source-sequence source-index))))
(do ((target-index target-start (1+ target-index))
(source-index source-start (1+ source-index)))
((or (= target-index (the fixnum target-end))
(= source-index (the fixnum source-end)))
target-sequence)
(declare (fixnum target-index source-index))
;; disable bounds checking
(declare (optimize (safety 0)))
(setf (aref target-sequence target-index)
(aref source-sequence source-index)))))
(sb!xc:defmacro list-replace-from-list ()
`(if (and (eq target-sequence source-sequence) (> target-start source-start))
(let ((new-elts (subseq source-sequence source-start
(+ (the fixnum source-start)
(the fixnum
(min (- (the fixnum target-end)
(the fixnum target-start))
(- (the fixnum source-end)
(the fixnum source-start))))))))
(do ((n new-elts (cdr n))
(o (nthcdr target-start target-sequence) (cdr o)))
((null n) target-sequence)
(rplaca o (car n))))
(do ((target-index target-start (1+ target-index))
(source-index source-start (1+ source-index))
(target-sequence-ref (nthcdr target-start target-sequence)
(cdr target-sequence-ref))
(source-sequence-ref (nthcdr source-start source-sequence)
(cdr source-sequence-ref)))
((or (= target-index (the fixnum target-end))
(= source-index (the fixnum source-end))
(null target-sequence-ref) (null source-sequence-ref))
target-sequence)
(declare (fixnum target-index source-index))
(rplaca target-sequence-ref (car source-sequence-ref)))))
(sb!xc:defmacro list-replace-from-mumble ()
`(do ((target-index target-start (1+ target-index))
(source-index source-start (1+ source-index))
(target-sequence-ref (nthcdr target-start target-sequence)
(cdr target-sequence-ref)))
((or (= target-index (the fixnum target-end))
(= source-index (the fixnum source-end))
(null target-sequence-ref))
target-sequence)
(declare (fixnum source-index target-index))
(rplaca target-sequence-ref (aref source-sequence source-index))))
(sb!xc:defmacro mumble-replace-from-list ()
`(do ((target-index target-start (1+ target-index))
(source-index source-start (1+ source-index))
(source-sequence (nthcdr source-start source-sequence)
(cdr source-sequence)))
((or (= target-index (the fixnum target-end))
(= source-index (the fixnum source-end))
(null source-sequence))
target-sequence)
(declare (fixnum target-index source-index))
(setf (aref target-sequence target-index) (car source-sequence))))
) ; EVAL-WHEN
;;;; The support routines for REPLACE are used by compiler transforms, so we
;;;; worry about dealing with END being supplied or defaulting to NIL
;;;; at this level.
(defun list-replace-from-list* (target-sequence source-sequence target-start
target-end source-start source-end)
(when (null target-end) (setq target-end (length target-sequence)))
(when (null source-end) (setq source-end (length source-sequence)))
(list-replace-from-list))
(defun list-replace-from-vector* (target-sequence source-sequence target-start
target-end source-start source-end)
(when (null target-end) (setq target-end (length target-sequence)))
(when (null source-end) (setq source-end (length source-sequence)))
(list-replace-from-mumble))
(defun vector-replace-from-list* (target-sequence source-sequence target-start
target-end source-start source-end)
(when (null target-end) (setq target-end (length target-sequence)))
(when (null source-end) (setq source-end (length source-sequence)))
(mumble-replace-from-list))
(defun vector-replace-from-vector* (target-sequence source-sequence
target-start target-end source-start
source-end)
(when (null target-end) (setq target-end (length target-sequence)))
(when (null source-end) (setq source-end (length source-sequence)))
(mumble-replace-from-mumble))
#!+sb-unicode
(defun simple-character-string-replace-from-simple-character-string*
(target-sequence source-sequence
target-start target-end source-start source-end)
(declare (type (simple-array character (*)) target-sequence source-sequence))
(when (null target-end) (setq target-end (length target-sequence)))
(when (null source-end) (setq source-end (length source-sequence)))
(mumble-replace-from-mumble))
(define-sequence-traverser replace
(sequence1 sequence2 &rest args &key start1 end1 start2 end2)
#!+sb-doc
"The target sequence is destructively modified by copying successive
elements into it from the source sequence."
(declare (truly-dynamic-extent args))
(let* (;; KLUDGE: absent either rewriting FOO-REPLACE-FROM-BAR, or
;; excessively polluting DEFINE-SEQUENCE-TRAVERSER, we rebind
;; these things here so that legacy code gets the names it's
;; expecting. We could use &AUX instead :-/.
(target-sequence sequence1)
(source-sequence sequence2)
(target-start start1)
(source-start start2)
(target-end (or end1 length1))
(source-end (or end2 length2)))
(seq-dispatch target-sequence
(seq-dispatch source-sequence
(list-replace-from-list)
(list-replace-from-mumble)
(apply #'sb!sequence:replace sequence1 sequence2 args))
(seq-dispatch source-sequence
(mumble-replace-from-list)
(mumble-replace-from-mumble)
(apply #'sb!sequence:replace sequence1 sequence2 args))
(apply #'sb!sequence:replace sequence1 sequence2 args))))
;;;; REVERSE
(eval-when (:compile-toplevel :execute)
(sb!xc:defmacro vector-reverse (sequence)
`(let ((length (length ,sequence)))
(declare (fixnum length))
(do ((forward-index 0 (1+ forward-index))
(backward-index (1- length) (1- backward-index))
(new-sequence (%make-sequence-like sequence length)))
((= forward-index length) new-sequence)
(declare (fixnum forward-index backward-index))
(setf (aref new-sequence forward-index)
(aref ,sequence backward-index)))))
(sb!xc:defmacro list-reverse-macro (sequence)
`(do ((new-list ()))
((endp ,sequence) new-list)
(push (pop ,sequence) new-list)))
) ; EVAL-WHEN
(defun reverse (sequence)
#!+sb-doc
"Return a new sequence containing the same elements but in reverse order."
(seq-dispatch sequence
(list-reverse* sequence)
(vector-reverse* sequence)
(sb!sequence:reverse sequence)))
;;; internal frobs
(defun list-reverse* (sequence)
(list-reverse-macro sequence))
(defun vector-reverse* (sequence)
(vector-reverse sequence))
;;;; NREVERSE
(eval-when (:compile-toplevel :execute)
(sb!xc:defmacro vector-nreverse (sequence)
`(let ((length (length (the vector ,sequence))))
(when (>= length 2)
(do ((left-index 0 (1+ left-index))
(right-index (1- length) (1- right-index)))
((<= right-index left-index))
(declare (type index left-index right-index))
(rotatef (aref ,sequence left-index)
(aref ,sequence right-index))))
,sequence))
(sb!xc:defmacro list-nreverse-macro (list)
`(do ((1st (cdr ,list) (if (endp 1st) 1st (cdr 1st)))
(2nd ,list 1st)
(3rd '() 2nd))
((atom 2nd) 3rd)
(rplacd 2nd 3rd)))
) ; EVAL-WHEN
(defun list-nreverse* (sequence)
(list-nreverse-macro sequence))
(defun vector-nreverse* (sequence)
(vector-nreverse sequence))
(defun nreverse (sequence)
#!+sb-doc
"Return a sequence of the same elements in reverse order; the argument
is destroyed."
(seq-dispatch sequence
(list-nreverse* sequence)
(vector-nreverse* sequence)
(sb!sequence:nreverse sequence)))
;;;; CONCATENATE
(defmacro sb!sequence:dosequence ((e sequence &optional return) &body body)
(multiple-value-bind (forms decls) (parse-body body :doc-string-allowed nil)
(let ((s sequence)
(sequence (gensym "SEQUENCE")))
`(block nil
(let ((,sequence ,s))
(seq-dispatch ,sequence
(dolist (,e ,sequence ,return) ,@body)
(dovector (,e ,sequence ,return) ,@body)
(multiple-value-bind (state limit from-end step endp elt)
(sb!sequence:make-sequence-iterator ,sequence)
(do ((state state (funcall step ,sequence state from-end)))
((funcall endp ,sequence state limit from-end)
(let ((,e nil))
,@(filter-dolist-declarations decls)
,e
,return))
(let ((,e (funcall elt ,sequence state)))
,@decls
(tagbody
,@forms))))))))))
(defun concatenate (output-type-spec &rest sequences)
#!+sb-doc
"Return a new sequence of all the argument sequences concatenated together
which shares no structure with the original argument sequences of the
specified OUTPUT-TYPE-SPEC."
(flet ((concat-to-list* (sequences)
(let ((result (list nil)))
(do ((sequences sequences (cdr sequences))
(splice result))
((null sequences) (cdr result))
(let ((sequence (car sequences)))
(sb!sequence:dosequence (e sequence)
(setq splice (cdr (rplacd splice (list e)))))))))
(concat-to-simple* (type-spec sequences)
(do ((seqs sequences (cdr seqs))
(total-length 0)
(lengths ()))
((null seqs)
(do ((sequences sequences (cdr sequences))
(lengths lengths (cdr lengths))
(index 0)
(result (make-sequence type-spec total-length)))
((= index total-length) result)
(declare (fixnum index))
(let ((sequence (car sequences)))
(sb!sequence:dosequence (e sequence)
(setf (aref result index) e)
(incf index)))))
(let ((length (length (car seqs))))
(declare (fixnum length))
(setq lengths (nconc lengths (list length)))
(setq total-length (+ total-length length))))))
(let ((type (specifier-type output-type-spec)))
(cond
((csubtypep type (specifier-type 'list))
(cond
((type= type (specifier-type 'list))
(concat-to-list* sequences))
((eq type *empty-type*)
(bad-sequence-type-error nil))
((type= type (specifier-type 'null))
(if (every (lambda (x) (or (null x)
(and (vectorp x) (= (length x) 0))))
sequences)
'nil
(sequence-type-length-mismatch-error
type
;; FIXME: circular list issues.
(reduce #'+ sequences :key #'length))))
((cons-type-p type)
(multiple-value-bind (min exactp)
(sb!kernel::cons-type-length-info type)
(let ((length (reduce #'+ sequences :key #'length)))
(if exactp
(unless (= length min)
(sequence-type-length-mismatch-error type length))
(unless (>= length min)
(sequence-type-length-mismatch-error type length)))
(concat-to-list* sequences))))
(t (sequence-type-too-hairy (type-specifier type)))))
((csubtypep type (specifier-type 'vector))
(concat-to-simple* output-type-spec sequences))
((and (csubtypep type (specifier-type 'sequence))
(find-class output-type-spec nil))
(coerce (concat-to-simple* 'vector sequences) output-type-spec))
(t
(bad-sequence-type-error output-type-spec))))))
;;; Efficient out-of-line concatenate for strings. Compiler transforms
;;; CONCATENATE 'STRING &co into these.
(macrolet ((def (name element-type)
`(defun ,name (&rest sequences)
(declare (dynamic-extent sequences)
(optimize speed)
(optimize (sb!c::insert-array-bounds-checks 0)))
(let* ((lengths (mapcar #'length sequences))
(result (make-array (the integer (apply #'+ lengths))
:element-type ',element-type))
(start 0))
(declare (index start))
(dolist (seq sequences)
(string-dispatch
((simple-array character (*))
(simple-array base-char (*))
t)
seq
(replace result seq :start1 start))
(incf start (the index (pop lengths))))
result))))
(def %concatenate-to-string character)
(def %concatenate-to-base-string base-char))
;;;; MAP and MAP-INTO
;;; helper functions to handle arity-1 subcases of MAP
(declaim (ftype (function (function sequence) list) %map-list-arity-1))
(declaim (ftype (function (function sequence) simple-vector)
%map-simple-vector-arity-1))
(defun %map-to-list-arity-1 (fun sequence)
(let ((reversed-result nil)
(really-fun (%coerce-callable-to-fun fun)))
(sb!sequence:dosequence (element sequence)
(push (funcall really-fun element)
reversed-result))
(nreverse reversed-result)))
(defun %map-to-simple-vector-arity-1 (fun sequence)
(let ((result (make-array (length sequence)))
(index 0)
(really-fun (%coerce-callable-to-fun fun)))
(declare (type index index))
(sb!sequence:dosequence (element sequence)
(setf (aref result index)
(funcall really-fun element))
(incf index))
result))
(defun %map-for-effect-arity-1 (fun sequence)
(let ((really-fun (%coerce-callable-to-fun fun)))
(sb!sequence:dosequence (element sequence)
(funcall really-fun element)))
nil)
(declaim (maybe-inline %map-for-effect))
(defun %map-for-effect (fun sequences)
(declare (type function fun) (type list sequences))
(let ((%sequences sequences)
(%iters (mapcar (lambda (s)
(seq-dispatch s
s
0
(multiple-value-list
(sb!sequence:make-sequence-iterator s))))
sequences))
(%apply-args (make-list (length sequences))))
;; this is almost efficient (except in the general case where we
;; trampoline to MAKE-SEQUENCE-ITERATOR; if we had DX allocation
;; of MAKE-LIST, the whole of %MAP would be cons-free.
(declare (type list %sequences %iters %apply-args))
(loop
(do ((in-sequences %sequences (cdr in-sequences))
(in-iters %iters (cdr in-iters))
(in-apply-args %apply-args (cdr in-apply-args)))
((null in-sequences) (apply fun %apply-args))
(let ((i (car in-iters)))
(declare (type (or list index) i))
(cond
((listp (car in-sequences))
(if (null i)
(return-from %map-for-effect nil)
(setf (car in-apply-args) (car i)
(car in-iters) (cdr i))))
((typep i 'index)
(let ((v (the vector (car in-sequences))))
(if (>= i (length v))
(return-from %map-for-effect nil)
(setf (car in-apply-args) (aref v i)
(car in-iters) (1+ i)))))
(t
(destructuring-bind (state limit from-end step endp elt &rest ignore)
i
(declare (type function step endp elt)
(ignore ignore))
(let ((s (car in-sequences)))
(if (funcall endp s state limit from-end)
(return-from %map-for-effect nil)
(progn
(setf (car in-apply-args) (funcall elt s state))
(setf (caar in-iters) (funcall step s state from-end)))))))))))))
(defun %map-to-list (fun sequences)
(declare (type function fun)
(type list sequences))
(let ((result nil))
(flet ((f (&rest args)
(declare (truly-dynamic-extent args))
(push (apply fun args) result)))
(declare (truly-dynamic-extent #'f))
(%map-for-effect #'f sequences))
(nreverse result)))
(defun %map-to-vector (output-type-spec fun sequences)
(declare (type function fun)
(type list sequences))
(let ((min-len 0))
(flet ((f (&rest args)
(declare (truly-dynamic-extent args))
(declare (ignore args))
(incf min-len)))
(declare (truly-dynamic-extent #'f))
(%map-for-effect #'f sequences))
(let ((result (make-sequence output-type-spec min-len))
(i 0))
(declare (type (simple-array * (*)) result))
(flet ((f (&rest args)
(declare (truly-dynamic-extent args))
(setf (aref result i) (apply fun args))
(incf i)))
(declare (truly-dynamic-extent #'f))
(%map-for-effect #'f sequences))
result)))
(defun %map-to-sequence (result-type fun sequences)
(declare (type function fun)
(type list sequences))
(let ((min-len 0))
(flet ((f (&rest args)
(declare (truly-dynamic-extent args))
(declare (ignore args))
(incf min-len)))
(declare (truly-dynamic-extent #'f))
(%map-for-effect #'f sequences))
(let ((result (make-sequence result-type min-len)))
(multiple-value-bind (state limit from-end step endp elt setelt)
(sb!sequence:make-sequence-iterator result)
(declare (ignore limit endp elt))
(flet ((f (&rest args)
(declare (truly-dynamic-extent args))
(funcall setelt (apply fun args) result state)
(setq state (funcall step result state from-end))))
(declare (truly-dynamic-extent #'f))
(%map-for-effect #'f sequences)))
result)))
;;; %MAP is just MAP without the final just-to-be-sure check that
;;; length of the output sequence matches any length specified
;;; in RESULT-TYPE.
(defun %map (result-type function first-sequence &rest more-sequences)
(let ((really-fun (%coerce-callable-to-fun function))
(type (specifier-type result-type)))
;; Handle one-argument MAP NIL specially, using ETYPECASE to turn
;; it into something which can be DEFTRANSFORMed away. (It's
;; fairly important to handle this case efficiently, since
;; quantifiers like SOME are transformed into this case, and since
;; there's no consing overhead to dwarf our inefficiency.)
(if (and (null more-sequences)
(null result-type))
(%map-for-effect-arity-1 really-fun first-sequence)
;; Otherwise, use the industrial-strength full-generality
;; approach, consing O(N-ARGS) temporary storage (which can have
;; DYNAMIC-EXTENT), then using O(N-ARGS * RESULT-LENGTH) time.
(let ((sequences (cons first-sequence more-sequences)))
(cond
((eq type *empty-type*) (%map-for-effect really-fun sequences))
((csubtypep type (specifier-type 'list))
(%map-to-list really-fun sequences))
((csubtypep type (specifier-type 'vector))
(%map-to-vector result-type really-fun sequences))
((and (csubtypep type (specifier-type 'sequence))
(find-class result-type nil))
(%map-to-sequence result-type really-fun sequences))
(t
(bad-sequence-type-error result-type)))))))
(defun map (result-type function first-sequence &rest more-sequences)
(apply #'%map
result-type
function
first-sequence
more-sequences))
;;; KLUDGE: MAP has been rewritten substantially since the fork from
;;; CMU CL in order to give reasonable performance, but this
;;; implementation of MAP-INTO still has the same problems as the old
;;; MAP code. Ideally, MAP-INTO should be rewritten to be efficient in
;;; the same way that the corresponding cases of MAP have been
;;; rewritten. Instead of doing it now, though, it's easier to wait
;;; until we have DYNAMIC-EXTENT, at which time it should become
;;; extremely easy to define a reasonably efficient MAP-INTO in terms
;;; of (MAP NIL ..). -- WHN 20000920
(defun map-into (result-sequence function &rest sequences)
(let* ((fp-result
(and (arrayp result-sequence)
(array-has-fill-pointer-p result-sequence)))
(len (apply #'min
(if fp-result
(array-dimension result-sequence 0)
(length result-sequence))
(mapcar #'length sequences))))
(when fp-result
(setf (fill-pointer result-sequence) len))
(let ((really-fun (%coerce-callable-to-fun function)))
(dotimes (index len)
(setf (elt result-sequence index)
(apply really-fun
(mapcar (lambda (seq) (elt seq index))
sequences))))))
result-sequence)
;;;; quantifiers
;;; We borrow the logic from (MAP NIL ..) to handle iteration over
;;; arbitrary sequence arguments, both in the full call case and in
;;; the open code case.
(macrolet ((defquantifier (name found-test found-result
&key doc (unfound-result (not found-result)))
`(progn
;; KLUDGE: It would be really nice if we could simply
;; do something like this
;; (declaim (inline ,name))
;; (defun ,name (pred first-seq &rest more-seqs)
;; ,doc
;; (flet ((map-me (&rest rest)
;; (let ((pred-value (apply pred rest)))
;; (,found-test pred-value
;; (return-from ,name
;; ,found-result)))))
;; (declare (inline map-me))
;; (apply #'map nil #'map-me first-seq more-seqs)
;; ,unfound-result))
;; but Python doesn't seem to be smart enough about
;; inlining and APPLY to recognize that it can use
;; the DEFTRANSFORM for MAP in the resulting inline
;; expansion. I don't have any appetite for deep
;; compiler hacking right now, so I'll just work
;; around the apparent problem by using a compiler
;; macro instead. -- WHN 20000410
(defun ,name (pred first-seq &rest more-seqs)
#!+sb-doc ,doc
(flet ((map-me (&rest rest)
(let ((pred-value (apply pred rest)))
(,found-test pred-value
(return-from ,name
,found-result)))))
(declare (inline map-me))
(apply #'map nil #'map-me first-seq more-seqs)
,unfound-result))
;; KLUDGE: It would be more obviously correct -- but
;; also significantly messier -- for PRED-VALUE to be
;; a gensym. However, a private symbol really does
;; seem to be good enough; and anyway the really
;; obviously correct solution is to make Python smart
;; enough that we can use an inline function instead
;; of a compiler macro (as above). -- WHN 20000410
;;
;; FIXME: The DEFINE-COMPILER-MACRO here can be
;; important for performance, and it'd be good to have
;; it be visible throughout the compilation of all the
;; target SBCL code. That could be done by defining
;; SB-XC:DEFINE-COMPILER-MACRO and using it here,
;; moving this DEFQUANTIFIER stuff (and perhaps other
;; inline definitions in seq.lisp as well) into a new
;; seq.lisp, and moving remaining target-only stuff
;; from the old seq.lisp into target-seq.lisp.
(define-compiler-macro ,name (pred first-seq &rest more-seqs)
(let ((elements (make-gensym-list (1+ (length more-seqs))))
(blockname (gensym "BLOCK")))
(once-only ((pred pred))
`(block ,blockname
(map nil
(lambda (,@elements)
(let ((pred-value (funcall ,pred ,@elements)))
(,',found-test pred-value
(return-from ,blockname
,',found-result))))
,first-seq
,@more-seqs)
,',unfound-result)))))))
(defquantifier some when pred-value :unfound-result nil :doc
"Apply PREDICATE to the 0-indexed elements of the sequences, then
possibly to those with index 1, and so on. Return the first
non-NIL value encountered, or NIL if the end of any sequence is reached.")
(defquantifier every unless nil :doc
"Apply PREDICATE to the 0-indexed elements of the sequences, then
possibly to those with index 1, and so on. Return NIL as soon
as any invocation of PREDICATE returns NIL, or T if every invocation
is non-NIL.")
(defquantifier notany when nil :doc
"Apply PREDICATE to the 0-indexed elements of the sequences, then
possibly to those with index 1, and so on. Return NIL as soon
as any invocation of PREDICATE returns a non-NIL value, or T if the end
of any sequence is reached.")
(defquantifier notevery unless t :doc
"Apply PREDICATE to 0-indexed elements of the sequences, then
possibly to those with index 1, and so on. Return T as soon
as any invocation of PREDICATE returns NIL, or NIL if every invocation
is non-NIL."))
;;;; REDUCE
(eval-when (:compile-toplevel :execute)
(sb!xc:defmacro mumble-reduce (function
sequence
key
start
end
initial-value
ref)
`(do ((index ,start (1+ index))
(value ,initial-value))
((>= index ,end) value)
(setq value (funcall ,function value
(apply-key ,key (,ref ,sequence index))))))
(sb!xc:defmacro mumble-reduce-from-end (function
sequence
key
start
end
initial-value
ref)
`(do ((index (1- ,end) (1- index))
(value ,initial-value)
(terminus (1- ,start)))
((<= index terminus) value)
(setq value (funcall ,function
(apply-key ,key (,ref ,sequence index))
value))))
(sb!xc:defmacro list-reduce (function
sequence
key
start
end
initial-value
ivp)
`(let ((sequence (nthcdr ,start ,sequence)))
(do ((count (if ,ivp ,start (1+ ,start))
(1+ count))
(sequence (if ,ivp sequence (cdr sequence))
(cdr sequence))
(value (if ,ivp ,initial-value (apply-key ,key (car sequence)))
(funcall ,function value (apply-key ,key (car sequence)))))
((>= count ,end) value))))
(sb!xc:defmacro list-reduce-from-end (function
sequence
key
start
end
initial-value
ivp)
`(let ((sequence (nthcdr (- (length ,sequence) ,end)
(reverse ,sequence))))
(do ((count (if ,ivp ,start (1+ ,start))
(1+ count))
(sequence (if ,ivp sequence (cdr sequence))
(cdr sequence))
(value (if ,ivp ,initial-value (apply-key ,key (car sequence)))
(funcall ,function (apply-key ,key (car sequence)) value)))
((>= count ,end) value))))
) ; EVAL-WHEN
(define-sequence-traverser reduce (function sequence &rest args &key key
from-end start end (initial-value nil ivp))
(declare (type index start))
(declare (truly-dynamic-extent args))
(let ((start start)
(end (or end length)))
(declare (type index start end))
(seq-dispatch sequence
(if (= end start)
(if ivp initial-value (funcall function))
(if from-end
(list-reduce-from-end function sequence key start end
initial-value ivp)
(list-reduce function sequence key start end
initial-value ivp)))
(if (= end start)
(if ivp initial-value (funcall function))
(if from-end
(progn
(when (not ivp)
(setq end (1- (the fixnum end)))
(setq initial-value (apply-key key (aref sequence end))))
(mumble-reduce-from-end function sequence key start end
initial-value aref))
(progn
(when (not ivp)
(setq initial-value (apply-key key (aref sequence start)))
(setq start (1+ start)))
(mumble-reduce function sequence key start end
initial-value aref))))
(apply #'sb!sequence:reduce function sequence args))))
;;;; DELETE
(eval-when (:compile-toplevel :execute)
(sb!xc:defmacro mumble-delete (pred)
`(do ((index start (1+ index))
(jndex start)
(number-zapped 0))
((or (= index (the fixnum end)) (= number-zapped count))
(do ((index index (1+ index)) ; Copy the rest of the vector.
(jndex jndex (1+ jndex)))
((= index (the fixnum length))
(shrink-vector sequence jndex))
(declare (fixnum index jndex))
(setf (aref sequence jndex) (aref sequence index))))
(declare (fixnum index jndex number-zapped))
(setf (aref sequence jndex) (aref sequence index))
(if ,pred
(incf number-zapped)
(incf jndex))))
(sb!xc:defmacro mumble-delete-from-end (pred)
`(do ((index (1- (the fixnum end)) (1- index)) ; Find the losers.
(number-zapped 0)
(losers ())
this-element
(terminus (1- start)))
((or (= index terminus) (= number-zapped count))
(do ((losers losers) ; Delete the losers.
(index start (1+ index))
(jndex start))
((or (null losers) (= index (the fixnum end)))
(do ((index index (1+ index)) ; Copy the rest of the vector.
(jndex jndex (1+ jndex)))
((= index (the fixnum length))
(shrink-vector sequence jndex))
(declare (fixnum index jndex))
(setf (aref sequence jndex) (aref sequence index))))
(declare (fixnum index jndex))
(setf (aref sequence jndex) (aref sequence index))
(if (= index (the fixnum (car losers)))
(pop losers)
(incf jndex))))
(declare (fixnum index number-zapped terminus))
(setq this-element (aref sequence index))
(when ,pred
(incf number-zapped)
(push index losers))))
(sb!xc:defmacro normal-mumble-delete ()
`(mumble-delete
(if test-not
(not (funcall test-not item (apply-key key (aref sequence index))))
(funcall test item (apply-key key (aref sequence index))))))
(sb!xc:defmacro normal-mumble-delete-from-end ()
`(mumble-delete-from-end
(if test-not
(not (funcall test-not item (apply-key key this-element)))
(funcall test item (apply-key key this-element)))))
(sb!xc:defmacro list-delete (pred)
`(let ((handle (cons nil sequence)))
(do ((current (nthcdr start sequence) (cdr current))
(previous (nthcdr start handle))
(index start (1+ index))
(number-zapped 0))
((or (= index (the fixnum end)) (= number-zapped count))
(cdr handle))
(declare (fixnum index number-zapped))
(cond (,pred
(rplacd previous (cdr current))
(incf number-zapped))
(t
(setq previous (cdr previous)))))))
(sb!xc:defmacro list-delete-from-end (pred)
`(let* ((reverse (nreverse (the list sequence)))
(handle (cons nil reverse)))
(do ((current (nthcdr (- (the fixnum length) (the fixnum end)) reverse)
(cdr current))
(previous (nthcdr (- (the fixnum length) (the fixnum end)) handle))
(index start (1+ index))
(number-zapped 0))
((or (= index (the fixnum end)) (= number-zapped count))
(nreverse (cdr handle)))
(declare (fixnum index number-zapped))
(cond (,pred
(rplacd previous (cdr current))
(incf number-zapped))
(t
(setq previous (cdr previous)))))))
(sb!xc:defmacro normal-list-delete ()
'(list-delete
(if test-not
(not (funcall test-not item (apply-key key (car current))))
(funcall test item (apply-key key (car current))))))
(sb!xc:defmacro normal-list-delete-from-end ()
'(list-delete-from-end
(if test-not
(not (funcall test-not item (apply-key key (car current))))
(funcall test item (apply-key key (car current))))))
) ; EVAL-WHEN
(define-sequence-traverser delete
(item sequence &rest args &key from-end test test-not start
end count key)
#!+sb-doc
"Return a sequence formed by destructively removing the specified ITEM from
the given SEQUENCE."
(declare (fixnum start))
(declare (truly-dynamic-extent args))
(let ((end (or end length)))
(declare (type index end))
(seq-dispatch sequence
(if from-end
(normal-list-delete-from-end)
(normal-list-delete))
(if from-end
(normal-mumble-delete-from-end)
(normal-mumble-delete))
(apply #'sb!sequence:delete item sequence args))))
(eval-when (:compile-toplevel :execute)
(sb!xc:defmacro if-mumble-delete ()
`(mumble-delete
(funcall predicate (apply-key key (aref sequence index)))))
(sb!xc:defmacro if-mumble-delete-from-end ()
`(mumble-delete-from-end
(funcall predicate (apply-key key this-element))))
(sb!xc:defmacro if-list-delete ()
'(list-delete
(funcall predicate (apply-key key (car current)))))
(sb!xc:defmacro if-list-delete-from-end ()
'(list-delete-from-end
(funcall predicate (apply-key key (car current)))))
) ; EVAL-WHEN
(define-sequence-traverser delete-if
(predicate sequence &rest args &key from-end start key end count)
#!+sb-doc
"Return a sequence formed by destructively removing the elements satisfying
the specified PREDICATE from the given SEQUENCE."
(declare (fixnum start))
(declare (truly-dynamic-extent args))
(let ((end (or end length)))
(declare (type index end))
(seq-dispatch sequence
(if from-end
(if-list-delete-from-end)
(if-list-delete))
(if from-end
(if-mumble-delete-from-end)
(if-mumble-delete))
(apply #'sb!sequence:delete-if predicate sequence args))))
(eval-when (:compile-toplevel :execute)
(sb!xc:defmacro if-not-mumble-delete ()
`(mumble-delete
(not (funcall predicate (apply-key key (aref sequence index))))))
(sb!xc:defmacro if-not-mumble-delete-from-end ()
`(mumble-delete-from-end
(not (funcall predicate (apply-key key this-element)))))
(sb!xc:defmacro if-not-list-delete ()
'(list-delete
(not (funcall predicate (apply-key key (car current))))))
(sb!xc:defmacro if-not-list-delete-from-end ()
'(list-delete-from-end
(not (funcall predicate (apply-key key (car current))))))
) ; EVAL-WHEN
(define-sequence-traverser delete-if-not
(predicate sequence &rest args &key from-end start end key count)
#!+sb-doc
"Return a sequence formed by destructively removing the elements not
satisfying the specified PREDICATE from the given SEQUENCE."
(declare (fixnum start))
(declare (truly-dynamic-extent args))
(let ((end (or end length)))
(declare (type index end))
(seq-dispatch sequence
(if from-end
(if-not-list-delete-from-end)
(if-not-list-delete))
(if from-end
(if-not-mumble-delete-from-end)
(if-not-mumble-delete))
(apply #'sb!sequence:delete-if-not predicate sequence args))))
;;;; REMOVE
(eval-when (:compile-toplevel :execute)
;;; MUMBLE-REMOVE-MACRO does not include (removes) each element that
;;; satisfies the predicate.
(sb!xc:defmacro mumble-remove-macro (bump left begin finish right pred)
`(do ((index ,begin (,bump index))
(result
(do ((index ,left (,bump index))
(result (%make-sequence-like sequence length)))
((= index (the fixnum ,begin)) result)
(declare (fixnum index))
(setf (aref result index) (aref sequence index))))
(new-index ,begin)
(number-zapped 0)
(this-element))
((or (= index (the fixnum ,finish))
(= number-zapped count))
(do ((index index (,bump index))
(new-index new-index (,bump new-index)))
((= index (the fixnum ,right)) (%shrink-vector result new-index))
(declare (fixnum index new-index))
(setf (aref result new-index) (aref sequence index))))
(declare (fixnum index new-index number-zapped))
(setq this-element (aref sequence index))
(cond (,pred (incf number-zapped))
(t (setf (aref result new-index) this-element)
(setq new-index (,bump new-index))))))
(sb!xc:defmacro mumble-remove (pred)
`(mumble-remove-macro 1+ 0 start end length ,pred))
(sb!xc:defmacro mumble-remove-from-end (pred)
`(let ((sequence (copy-seq sequence)))
(mumble-delete-from-end ,pred)))
(sb!xc:defmacro normal-mumble-remove ()
`(mumble-remove
(if test-not
(not (funcall test-not item (apply-key key this-element)))
(funcall test item (apply-key key this-element)))))
(sb!xc:defmacro normal-mumble-remove-from-end ()
`(mumble-remove-from-end
(if test-not
(not (funcall test-not item (apply-key key this-element)))
(funcall test item (apply-key key this-element)))))
(sb!xc:defmacro if-mumble-remove ()
`(mumble-remove (funcall predicate (apply-key key this-element))))
(sb!xc:defmacro if-mumble-remove-from-end ()
`(mumble-remove-from-end (funcall predicate (apply-key key this-element))))
(sb!xc:defmacro if-not-mumble-remove ()
`(mumble-remove (not (funcall predicate (apply-key key this-element)))))
(sb!xc:defmacro if-not-mumble-remove-from-end ()
`(mumble-remove-from-end
(not (funcall predicate (apply-key key this-element)))))
;;; LIST-REMOVE-MACRO does not include (removes) each element that satisfies
;;; the predicate.
(sb!xc:defmacro list-remove-macro (pred reverse?)
`(let* ((sequence ,(if reverse?
'(reverse (the list sequence))
'sequence))
(%start ,(if reverse? '(- length end) 'start))
(%end ,(if reverse? '(- length start) 'end))
(splice (list nil))
(results (do ((index 0 (1+ index))
(before-start splice))
((= index (the fixnum %start)) before-start)
(declare (fixnum index))
(setq splice
(cdr (rplacd splice (list (pop sequence))))))))
(do ((index %start (1+ index))
(this-element)
(number-zapped 0))
((or (= index (the fixnum %end)) (= number-zapped count))
(do ((index index (1+ index)))
((null sequence)
,(if reverse?
'(nreverse (the list (cdr results)))
'(cdr results)))
(declare (fixnum index))
(setq splice (cdr (rplacd splice (list (pop sequence)))))))
(declare (fixnum index number-zapped))
(setq this-element (pop sequence))
(if ,pred
(setq number-zapped (1+ number-zapped))
(setq splice (cdr (rplacd splice (list this-element))))))))
(sb!xc:defmacro list-remove (pred)
`(list-remove-macro ,pred nil))
(sb!xc:defmacro list-remove-from-end (pred)
`(list-remove-macro ,pred t))
(sb!xc:defmacro normal-list-remove ()
`(list-remove
(if test-not
(not (funcall test-not item (apply-key key this-element)))
(funcall test item (apply-key key this-element)))))
(sb!xc:defmacro normal-list-remove-from-end ()
`(list-remove-from-end
(if test-not
(not (funcall test-not item (apply-key key this-element)))
(funcall test item (apply-key key this-element)))))
(sb!xc:defmacro if-list-remove ()
`(list-remove
(funcall predicate (apply-key key this-element))))
(sb!xc:defmacro if-list-remove-from-end ()
`(list-remove-from-end
(funcall predicate (apply-key key this-element))))
(sb!xc:defmacro if-not-list-remove ()
`(list-remove
(not (funcall predicate (apply-key key this-element)))))
(sb!xc:defmacro if-not-list-remove-from-end ()
`(list-remove-from-end
(not (funcall predicate (apply-key key this-element)))))
) ; EVAL-WHEN
(define-sequence-traverser remove
(item sequence &rest args &key from-end test test-not start
end count key)
#!+sb-doc
"Return a copy of SEQUENCE with elements satisfying the test (default is
EQL) with ITEM removed."
(declare (fixnum start))
(declare (truly-dynamic-extent args))
(let ((end (or end length)))
(declare (type index end))
(seq-dispatch sequence
(if from-end
(normal-list-remove-from-end)
(normal-list-remove))
(if from-end
(normal-mumble-remove-from-end)
(normal-mumble-remove))
(apply #'sb!sequence:remove item sequence args))))
(define-sequence-traverser remove-if
(predicate sequence &rest args &key from-end start end count key)
#!+sb-doc
"Return a copy of sequence with elements satisfying PREDICATE removed."
(declare (fixnum start))
(declare (truly-dynamic-extent args))
(let ((end (or end length)))
(declare (type index end))
(seq-dispatch sequence
(if from-end
(if-list-remove-from-end)
(if-list-remove))
(if from-end
(if-mumble-remove-from-end)
(if-mumble-remove))
(apply #'sb!sequence:remove-if predicate sequence args))))
(define-sequence-traverser remove-if-not
(predicate sequence &rest args &key from-end start end count key)
#!+sb-doc
"Return a copy of sequence with elements not satisfying PREDICATE removed."
(declare (fixnum start))
(declare (truly-dynamic-extent args))
(let ((end (or end length)))
(declare (type index end))
(seq-dispatch sequence
(if from-end
(if-not-list-remove-from-end)
(if-not-list-remove))
(if from-end
(if-not-mumble-remove-from-end)
(if-not-mumble-remove))
(apply #'sb!sequence:remove-if-not predicate sequence args))))
;;;; REMOVE-DUPLICATES
;;; Remove duplicates from a list. If from-end, remove the later duplicates,
;;; not the earlier ones. Thus if we check from-end we don't copy an item
;;; if we look into the already copied structure (from after :start) and see
;;; the item. If we check from beginning we check into the rest of the
;;; original list up to the :end marker (this we have to do by running a
;;; do loop down the list that far and using our test.
(defun list-remove-duplicates* (list test test-not start end key from-end)
(declare (fixnum start))
(let* ((result (list ())) ; Put a marker on the beginning to splice with.
(splice result)
(current list)
(end (or end (length list)))
(hash (and (> (- end start) 20)
test
(not key)
(not test-not)
(or (eql test #'eql)
(eql test #'eq)
(eql test #'equal)
(eql test #'equalp))
(make-hash-table :test test :size (- end start)))))
(do ((index 0 (1+ index)))
((= index start))
(declare (fixnum index))
(setq splice (cdr (rplacd splice (list (car current)))))
(setq current (cdr current)))
(if hash
(do ((index start (1+ index)))
((or (and end (= index (the fixnum end)))
(atom current)))
(declare (fixnum index))
;; The hash table contains links from values that are
;; already in result to the cons cell *preceding* theirs
;; in the list. That is, for each value v in the list,
;; v and (cadr (gethash v hash)) are equal under TEST.
(let ((prev (gethash (car current) hash)))
(cond
((not prev)
(setf (gethash (car current) hash) splice)
(setq splice (cdr (rplacd splice (list (car current))))))
((not from-end)
(let* ((old (cdr prev))
(next (cdr old)))
(if next
(let ((next-val (car next)))
;; (assert (eq (gethash next-val hash) old))
(setf (cdr prev) next
(gethash next-val hash) prev
(gethash (car current) hash) splice
splice (cdr (rplacd splice (list (car current))))))
(setf (car old) (car current)))))))
(setq current (cdr current)))
(do ((index start (1+ index)))
((or (and end (= index (the fixnum end)))
(atom current)))
(declare (fixnum index))
(if (or (and from-end
(not (if test-not
(member (apply-key key (car current))
(nthcdr (1+ start) result)
:test-not test-not
:key key)
(member (apply-key key (car current))
(nthcdr (1+ start) result)
:test test
:key key))))
(and (not from-end)
(not (do ((it (apply-key key (car current)))
(l (cdr current) (cdr l))
(i (1+ index) (1+ i)))
((or (atom l) (and end (= i (the fixnum end))))
())
(declare (fixnum i))
(if (if test-not
(not (funcall test-not
it
(apply-key key (car l))))
(funcall test it (apply-key key (car l))))
(return t))))))
(setq splice (cdr (rplacd splice (list (car current))))))
(setq current (cdr current))))
(do ()
((atom current))
(setq splice (cdr (rplacd splice (list (car current)))))
(setq current (cdr current)))
(cdr result)))
(defun vector-remove-duplicates* (vector test test-not start end key from-end
&optional (length (length vector)))
(declare (vector vector) (fixnum start length))
(when (null end) (setf end (length vector)))
(let ((result (%make-sequence-like vector length))
(index 0)
(jndex start))
(declare (fixnum index jndex))
(do ()
((= index start))
(setf (aref result index) (aref vector index))
(setq index (1+ index)))
(do ((elt))
((= index end))
(setq elt (aref vector index))
(unless (or (and from-end
(if test-not
(position (apply-key key elt) result
:start start :end jndex
:test-not test-not :key key)
(position (apply-key key elt) result
:start start :end jndex
:test test :key key)))
(and (not from-end)
(if test-not
(position (apply-key key elt) vector
:start (1+ index) :end end
:test-not test-not :key key)
(position (apply-key key elt) vector
:start (1+ index) :end end
:test test :key key))))
(setf (aref result jndex) elt)
(setq jndex (1+ jndex)))
(setq index (1+ index)))
(do ()
((= index length))
(setf (aref result jndex) (aref vector index))
(setq index (1+ index))
(setq jndex (1+ jndex)))
(%shrink-vector result jndex)))
(define-sequence-traverser remove-duplicates
(sequence &rest args &key test test-not start end from-end key)
#!+sb-doc
"The elements of SEQUENCE are compared pairwise, and if any two match,
the one occurring earlier is discarded, unless FROM-END is true, in
which case the one later in the sequence is discarded. The resulting
sequence is returned.
The :TEST-NOT argument is deprecated."
(declare (fixnum start))
(declare (truly-dynamic-extent args))
(seq-dispatch sequence
(if sequence
(list-remove-duplicates* sequence test test-not
start end key from-end))
(vector-remove-duplicates* sequence test test-not start end key from-end)
(apply #'sb!sequence:remove-duplicates sequence args)))
;;;; DELETE-DUPLICATES
(defun list-delete-duplicates* (list test test-not key from-end start end)
(declare (fixnum start))
(let ((handle (cons nil list)))
(do ((current (nthcdr start list) (cdr current))
(previous (nthcdr start handle))
(index start (1+ index)))
((or (and end (= index (the fixnum end))) (null current))
(cdr handle))
(declare (fixnum index))
(if (do ((x (if from-end
(nthcdr (1+ start) handle)
(cdr current))
(cdr x))
(i (1+ index) (1+ i)))
((or (null x)
(and (not from-end) end (= i (the fixnum end)))
(eq x current))
nil)
(declare (fixnum i))
(if (if test-not
(not (funcall test-not
(apply-key key (car current))
(apply-key key (car x))))
(funcall test
(apply-key key (car current))
(apply-key key (car x))))
(return t)))
(rplacd previous (cdr current))
(setq previous (cdr previous))))))
(defun vector-delete-duplicates* (vector test test-not key from-end start end
&optional (length (length vector)))
(declare (vector vector) (fixnum start length))
(when (null end) (setf end (length vector)))
(do ((index start (1+ index))
(jndex start))
((= index end)
(do ((index index (1+ index)) ; copy the rest of the vector
(jndex jndex (1+ jndex)))
((= index length)
(shrink-vector vector jndex))
(setf (aref vector jndex) (aref vector index))))
(declare (fixnum index jndex))
(setf (aref vector jndex) (aref vector index))
(unless (if test-not
(position (apply-key key (aref vector index)) vector :key key
:start (if from-end start (1+ index))
:end (if from-end jndex end)
:test-not test-not)
(position (apply-key key (aref vector index)) vector :key key
:start (if from-end start (1+ index))
:end (if from-end jndex end)
:test test))
(setq jndex (1+ jndex)))))
(define-sequence-traverser delete-duplicates
(sequence &rest args &key test test-not start end from-end key)
#!+sb-doc
"The elements of SEQUENCE are examined, and if any two match, one is
discarded. The resulting sequence, which may be formed by destroying the
given sequence, is returned.
The :TEST-NOT argument is deprecated."
(declare (truly-dynamic-extent args))
(seq-dispatch sequence
(if sequence
(list-delete-duplicates* sequence test test-not
key from-end start end))
(vector-delete-duplicates* sequence test test-not key from-end start end)
(apply #'sb!sequence:delete-duplicates sequence args)))
;;;; SUBSTITUTE
(defun list-substitute* (pred new list start end count key test test-not old)
(declare (fixnum start end count))
(let* ((result (list nil))
elt
(splice result)
(list list)) ; Get a local list for a stepper.
(do ((index 0 (1+ index)))
((= index start))
(declare (fixnum index))
(setq splice (cdr (rplacd splice (list (car list)))))
(setq list (cdr list)))
(do ((index start (1+ index)))
((or (= index end) (null list) (= count 0)))
(declare (fixnum index))
(setq elt (car list))
(setq splice
(cdr (rplacd splice
(list
(cond
((case pred
(normal
(if test-not
(not
(funcall test-not old (apply-key key elt)))
(funcall test old (apply-key key elt))))
(if (funcall test (apply-key key elt)))
(if-not (not (funcall test (apply-key key elt)))))
(decf count)
new)
(t elt))))))
(setq list (cdr list)))
(do ()
((null list))
(setq splice (cdr (rplacd splice (list (car list)))))
(setq list (cdr list)))
(cdr result)))
;;; Replace old with new in sequence moving from left to right by incrementer
;;; on each pass through the loop. Called by all three substitute functions.
(defun vector-substitute* (pred new sequence incrementer left right length
start end count key test test-not old)
(declare (fixnum start count end incrementer right))
(let ((result (%make-sequence-like sequence length))
(index left))
(declare (fixnum index))
(do ()
((= index start))
(setf (aref result index) (aref sequence index))
(setq index (+ index incrementer)))
(do ((elt))
((or (= index end) (= count 0)))
(setq elt (aref sequence index))
(setf (aref result index)
(cond ((case pred
(normal
(if test-not
(not (funcall test-not old (apply-key key elt)))
(funcall test old (apply-key key elt))))
(if (funcall test (apply-key key elt)))
(if-not (not (funcall test (apply-key key elt)))))
(setq count (1- count))
new)
(t elt)))
(setq index (+ index incrementer)))
(do ()
((= index right))
(setf (aref result index) (aref sequence index))
(setq index (+ index incrementer)))
result))
(eval-when (:compile-toplevel :execute)
(sb!xc:defmacro subst-dispatch (pred)
`(seq-dispatch sequence
(if from-end
(nreverse (list-substitute* ,pred
new
(reverse sequence)
(- (the fixnum length)
(the fixnum end))
(- (the fixnum length)
(the fixnum start))
count key test test-not old))
(list-substitute* ,pred
new sequence start end count key test test-not
old))
(if from-end
(vector-substitute* ,pred new sequence -1 (1- (the fixnum length))
-1 length (1- (the fixnum end))
(1- (the fixnum start))
count key test test-not old)
(vector-substitute* ,pred new sequence 1 0 length length
start end count key test test-not old))
;; FIXME: wow, this is an odd way to implement the dispatch. PRED
;; here is (QUOTE [NORMAL|IF|IF-NOT]). Not only is this pretty
;; pointless, but also LIST-SUBSTITUTE* and VECTOR-SUBSTITUTE*
;; dispatch once per element on PRED's run-time identity.
,(ecase (cadr pred)
((normal) `(apply #'sb!sequence:substitute new old sequence args))
((if) `(apply #'sb!sequence:substitute-if new predicate sequence args))
((if-not) `(apply #'sb!sequence:substitute-if-not new predicate sequence args)))))
) ; EVAL-WHEN
(define-sequence-traverser substitute
(new old sequence &rest args &key from-end test test-not
start count end key)
#!+sb-doc
"Return a sequence of the same kind as SEQUENCE with the same elements,
except that all elements equal to OLD are replaced with NEW."
(declare (fixnum start))
(declare (truly-dynamic-extent args))
(let ((end (or end length)))
(declare (type index end))
(subst-dispatch 'normal)))
;;;; SUBSTITUTE-IF, SUBSTITUTE-IF-NOT
(define-sequence-traverser substitute-if
(new predicate sequence &rest args &key from-end start end count key)
#!+sb-doc
"Return a sequence of the same kind as SEQUENCE with the same elements
except that all elements satisfying the PRED are replaced with NEW."
(declare (truly-dynamic-extent args))
(declare (fixnum start))
(let ((end (or end length))
(test predicate)
(test-not nil)
old)
(declare (type index length end))
(subst-dispatch 'if)))
(define-sequence-traverser substitute-if-not
(new predicate sequence &rest args &key from-end start end count key)
#!+sb-doc
"Return a sequence of the same kind as SEQUENCE with the same elements
except that all elements not satisfying the PRED are replaced with NEW."
(declare (truly-dynamic-extent args))
(declare (fixnum start))
(let ((end (or end length))
(test predicate)
(test-not nil)
old)
(declare (type index length end))
(subst-dispatch 'if-not)))
;;;; NSUBSTITUTE
(define-sequence-traverser nsubstitute
(new old sequence &rest args &key from-end test test-not
end count key start)
#!+sb-doc
"Return a sequence of the same kind as SEQUENCE with the same elements
except that all elements equal to OLD are replaced with NEW. SEQUENCE
may be destructively modified."
(declare (fixnum start))
(declare (truly-dynamic-extent args))
(let ((end (or end length)))
(seq-dispatch sequence
(if from-end
(let ((length (length sequence)))
(nreverse (nlist-substitute*
new old (nreverse (the list sequence))
test test-not (- length end) (- length start)
count key)))
(nlist-substitute* new old sequence
test test-not start end count key))
(if from-end
(nvector-substitute* new old sequence -1
test test-not (1- end) (1- start) count key)
(nvector-substitute* new old sequence 1
test test-not start end count key))
(apply #'sb!sequence:nsubstitute new old sequence args))))
(defun nlist-substitute* (new old sequence test test-not start end count key)
(declare (fixnum start count end))
(do ((list (nthcdr start sequence) (cdr list))
(index start (1+ index)))
((or (= index end) (null list) (= count 0)) sequence)
(declare (fixnum index))
(when (if test-not
(not (funcall test-not old (apply-key key (car list))))
(funcall test old (apply-key key (car list))))
(rplaca list new)
(setq count (1- count)))))
(defun nvector-substitute* (new old sequence incrementer
test test-not start end count key)
(declare (fixnum start incrementer count end))
(do ((index start (+ index incrementer)))
((or (= index end) (= count 0)) sequence)
(declare (fixnum index))
(when (if test-not
(not (funcall test-not
old
(apply-key key (aref sequence index))))
(funcall test old (apply-key key (aref sequence index))))
(setf (aref sequence index) new)
(setq count (1- count)))))
;;;; NSUBSTITUTE-IF, NSUBSTITUTE-IF-NOT
(define-sequence-traverser nsubstitute-if
(new predicate sequence &rest args &key from-end start end count key)
#!+sb-doc
"Return a sequence of the same kind as SEQUENCE with the same elements
except that all elements satisfying PREDICATE are replaced with NEW.
SEQUENCE may be destructively modified."
(declare (fixnum start))
(declare (truly-dynamic-extent args))
(let ((end (or end length)))
(declare (fixnum end))
(seq-dispatch sequence
(if from-end
(let ((length (length sequence)))
(nreverse (nlist-substitute-if*
new predicate (nreverse (the list sequence))
(- length end) (- length start) count key)))
(nlist-substitute-if* new predicate sequence
start end count key))
(if from-end
(nvector-substitute-if* new predicate sequence -1
(1- end) (1- start) count key)
(nvector-substitute-if* new predicate sequence 1
start end count key))
(apply #'sb!sequence:nsubstitute-if new predicate sequence args))))
(defun nlist-substitute-if* (new test sequence start end count key)
(declare (fixnum end))
(do ((list (nthcdr start sequence) (cdr list))
(index start (1+ index)))
((or (= index end) (null list) (= count 0)) sequence)
(when (funcall test (apply-key key (car list)))
(rplaca list new)
(setq count (1- count)))))
(defun nvector-substitute-if* (new test sequence incrementer
start end count key)
(do ((index start (+ index incrementer)))
((or (= index end) (= count 0)) sequence)
(when (funcall test (apply-key key (aref sequence index)))
(setf (aref sequence index) new)
(setq count (1- count)))))
(define-sequence-traverser nsubstitute-if-not
(new predicate sequence &rest args &key from-end start end count key)
#!+sb-doc
"Return a sequence of the same kind as SEQUENCE with the same elements
except that all elements not satisfying PREDICATE are replaced with NEW.
SEQUENCE may be destructively modified."
(declare (fixnum start))
(declare (truly-dynamic-extent args))
(let ((end (or end length)))
(declare (fixnum end))
(seq-dispatch sequence
(if from-end
(let ((length (length sequence)))
(nreverse (nlist-substitute-if-not*
new predicate (nreverse (the list sequence))
(- length end) (- length start) count key)))
(nlist-substitute-if-not* new predicate sequence
start end count key))
(if from-end
(nvector-substitute-if-not* new predicate sequence -1
(1- end) (1- start) count key)
(nvector-substitute-if-not* new predicate sequence 1
start end count key))
(apply #'sb!sequence:nsubstitute-if-not new predicate sequence args))))
(defun nlist-substitute-if-not* (new test sequence start end count key)
(declare (fixnum end))
(do ((list (nthcdr start sequence) (cdr list))
(index start (1+ index)))
((or (= index end) (null list) (= count 0)) sequence)
(when (not (funcall test (apply-key key (car list))))
(rplaca list new)
(decf count))))
(defun nvector-substitute-if-not* (new test sequence incrementer
start end count key)
(do ((index start (+ index incrementer)))
((or (= index end) (= count 0)) sequence)
(when (not (funcall test (apply-key key (aref sequence index))))
(setf (aref sequence index) new)
(decf count))))
;;;; FIND, POSITION, and their -IF and -IF-NOT variants
(defun effective-find-position-test (test test-not)
(effective-find-position-test test test-not))
(defun effective-find-position-key (key)
(effective-find-position-key key))
;;; shared guts of out-of-line FIND, POSITION, FIND-IF, and POSITION-IF
(macrolet (;; shared logic for defining %FIND-POSITION and
;; %FIND-POSITION-IF in terms of various inlineable cases
;; of the expression defined in FROB and VECTOR*-FROB
(frobs (&optional bit-frob)
`(seq-dispatch sequence-arg
(frob sequence-arg from-end)
(with-array-data ((sequence sequence-arg :offset-var offset)
(start start)
(end end)
:check-fill-pointer t)
(multiple-value-bind (f p)
(macrolet ((frob2 () `(if from-end
(frob sequence t)
(frob sequence nil))))
(typecase sequence
#!+sb-unicode
((simple-array character (*)) (frob2))
((simple-array base-char (*)) (frob2))
,@(when bit-frob
`((simple-bit-vector
(if (and (eq #'identity key)
(or (eq #'eq test)
(eq #'eql test)
(eq #'equal test)))
(let ((p (%bit-position (the bit item) sequence
from-end start end)))
(if p
(values item p)
(values nil nil)))
(vector*-frob sequence)))))
(t
(vector*-frob sequence))))
(declare (type (or index null) p))
(values f (and p (the index (- p offset)))))))))
(defun %find-position (item sequence-arg from-end start end key test)
(macrolet ((frob (sequence from-end)
`(%find-position item ,sequence
,from-end start end key test))
(vector*-frob (sequence)
`(%find-position-vector-macro item ,sequence
from-end start end key test)))
(frobs t)))
(defun %find-position-if (predicate sequence-arg from-end start end key)
(macrolet ((frob (sequence from-end)
`(%find-position-if predicate ,sequence
,from-end start end key))
(vector*-frob (sequence)
`(%find-position-if-vector-macro predicate ,sequence
from-end start end key)))
(frobs)))
(defun %find-position-if-not (predicate sequence-arg from-end start end key)
(macrolet ((frob (sequence from-end)
`(%find-position-if-not predicate ,sequence
,from-end start end key))
(vector*-frob (sequence)
`(%find-position-if-not-vector-macro predicate ,sequence
from-end start end key)))
(frobs))))
(defun find
(item sequence &rest args &key from-end (start 0) end key test test-not)
(declare (truly-dynamic-extent args))
(seq-dispatch sequence
(nth-value 0 (%find-position
item sequence from-end start end
(effective-find-position-key key)
(effective-find-position-test test test-not)))
(nth-value 0 (%find-position
item sequence from-end start end
(effective-find-position-key key)
(effective-find-position-test test test-not)))
(apply #'sb!sequence:find item sequence args)))
(defun position
(item sequence &rest args &key from-end (start 0) end key test test-not)
(declare (truly-dynamic-extent args))
(seq-dispatch sequence
(nth-value 1 (%find-position
item sequence from-end start end
(effective-find-position-key key)
(effective-find-position-test test test-not)))
(nth-value 1 (%find-position
item sequence from-end start end
(effective-find-position-key key)
(effective-find-position-test test test-not)))
(apply #'sb!sequence:position item sequence args)))
(defun find-if (predicate sequence &rest args &key from-end (start 0) end key)
(declare (truly-dynamic-extent args))
(seq-dispatch sequence
(nth-value 0 (%find-position-if
(%coerce-callable-to-fun predicate)
sequence from-end start end
(effective-find-position-key key)))
(nth-value 0 (%find-position-if
(%coerce-callable-to-fun predicate)
sequence from-end start end
(effective-find-position-key key)))
(apply #'sb!sequence:find-if predicate sequence args)))
(defun position-if
(predicate sequence &rest args &key from-end (start 0) end key)
(declare (truly-dynamic-extent args))
(seq-dispatch sequence
(nth-value 1 (%find-position-if
(%coerce-callable-to-fun predicate)
sequence from-end start end
(effective-find-position-key key)))
(nth-value 1 (%find-position-if
(%coerce-callable-to-fun predicate)
sequence from-end start end
(effective-find-position-key key)))
(apply #'sb!sequence:position-if predicate sequence args)))
(defun find-if-not
(predicate sequence &rest args &key from-end (start 0) end key)
(declare (truly-dynamic-extent args))
(seq-dispatch sequence
(nth-value 0 (%find-position-if-not
(%coerce-callable-to-fun predicate)
sequence from-end start end
(effective-find-position-key key)))
(nth-value 0 (%find-position-if-not
(%coerce-callable-to-fun predicate)
sequence from-end start end
(effective-find-position-key key)))
(apply #'sb!sequence:find-if-not predicate sequence args)))
(defun position-if-not
(predicate sequence &rest args &key from-end (start 0) end key)
(declare (truly-dynamic-extent args))
(seq-dispatch sequence
(nth-value 1 (%find-position-if-not
(%coerce-callable-to-fun predicate)
sequence from-end start end
(effective-find-position-key key)))
(nth-value 1 (%find-position-if-not
(%coerce-callable-to-fun predicate)
sequence from-end start end
(effective-find-position-key key)))
(apply #'sb!sequence:position-if-not predicate sequence args)))
;;;; COUNT-IF, COUNT-IF-NOT, and COUNT
(eval-when (:compile-toplevel :execute)
(sb!xc:defmacro vector-count-if (notp from-end-p predicate sequence)
(let ((next-index (if from-end-p '(1- index) '(1+ index)))
(pred `(funcall ,predicate (apply-key key (aref ,sequence index)))))
`(let ((%start ,(if from-end-p '(1- end) 'start))
(%end ,(if from-end-p '(1- start) 'end)))
(do ((index %start ,next-index)
(count 0))
((= index (the fixnum %end)) count)
(declare (fixnum index count))
(,(if notp 'unless 'when) ,pred
(setq count (1+ count)))))))
(sb!xc:defmacro list-count-if (notp from-end-p predicate sequence)
(let ((pred `(funcall ,predicate (apply-key key (pop sequence)))))
`(let ((%start ,(if from-end-p '(- length end) 'start))
(%end ,(if from-end-p '(- length start) 'end))
(sequence ,(if from-end-p '(reverse sequence) 'sequence)))
(do ((sequence (nthcdr %start ,sequence))
(index %start (1+ index))
(count 0))
((or (= index (the fixnum %end)) (null sequence)) count)
(declare (fixnum index count))
(,(if notp 'unless 'when) ,pred
(setq count (1+ count)))))))
) ; EVAL-WHEN
(define-sequence-traverser count-if
(pred sequence &rest args &key from-end start end key)
#!+sb-doc
"Return the number of elements in SEQUENCE satisfying PRED(el)."
(declare (fixnum start))
(declare (truly-dynamic-extent args))
(let ((end (or end length))
(pred (%coerce-callable-to-fun pred)))
(declare (type index end))
(seq-dispatch sequence
(if from-end
(list-count-if nil t pred sequence)
(list-count-if nil nil pred sequence))
(if from-end
(vector-count-if nil t pred sequence)
(vector-count-if nil nil pred sequence))
(apply #'sb!sequence:count-if pred sequence args))))
(define-sequence-traverser count-if-not
(pred sequence &rest args &key from-end start end key)
#!+sb-doc
"Return the number of elements in SEQUENCE not satisfying TEST(el)."
(declare (fixnum start))
(declare (truly-dynamic-extent args))
(let ((end (or end length))
(pred (%coerce-callable-to-fun pred)))
(declare (type index end))
(seq-dispatch sequence
(if from-end
(list-count-if t t pred sequence)
(list-count-if t nil pred sequence))
(if from-end
(vector-count-if t t pred sequence)
(vector-count-if t nil pred sequence))
(apply #'sb!sequence:count-if-not pred sequence args))))
(define-sequence-traverser count
(item sequence &rest args &key from-end start end
key (test #'eql test-p) (test-not nil test-not-p))
#!+sb-doc
"Return the number of elements in SEQUENCE satisfying a test with ITEM,
which defaults to EQL."
(declare (fixnum start))
(declare (truly-dynamic-extent args))
(when (and test-p test-not-p)
;; ANSI Common Lisp has left the behavior in this situation unspecified.
;; (CLHS 17.2.1)
(error ":TEST and :TEST-NOT are both present."))
(let ((end (or end length)))
(declare (type index end))
(let ((%test (if test-not-p
(lambda (x)
(not (funcall test-not item x)))
(lambda (x)
(funcall test item x)))))
(seq-dispatch sequence
(if from-end
(list-count-if nil t %test sequence)
(list-count-if nil nil %test sequence))
(if from-end
(vector-count-if nil t %test sequence)
(vector-count-if nil nil %test sequence))
(apply #'sb!sequence:count item sequence args)))))
;;;; MISMATCH
(eval-when (:compile-toplevel :execute)
(sb!xc:defmacro match-vars (&rest body)
`(let ((inc (if from-end -1 1))
(start1 (if from-end (1- (the fixnum end1)) start1))
(start2 (if from-end (1- (the fixnum end2)) start2))
(end1 (if from-end (1- (the fixnum start1)) end1))
(end2 (if from-end (1- (the fixnum start2)) end2)))
(declare (fixnum inc start1 start2 end1 end2))
,@body))
(sb!xc:defmacro matchify-list ((sequence start length end) &body body)
(declare (ignore end)) ;; ### Should END be used below?
`(let ((,sequence (if from-end
(nthcdr (- (the fixnum ,length) (the fixnum ,start) 1)
(reverse (the list ,sequence)))
(nthcdr ,start ,sequence))))
(declare (type list ,sequence))
,@body))
) ; EVAL-WHEN
(eval-when (:compile-toplevel :execute)
(sb!xc:defmacro if-mismatch (elt1 elt2)
`(cond ((= (the fixnum index1) (the fixnum end1))
(return (if (= (the fixnum index2) (the fixnum end2))
nil
(if from-end
(1+ (the fixnum index1))
(the fixnum index1)))))
((= (the fixnum index2) (the fixnum end2))
(return (if from-end (1+ (the fixnum index1)) index1)))
(test-not
(if (funcall test-not (apply-key key ,elt1) (apply-key key ,elt2))
(return (if from-end (1+ (the fixnum index1)) index1))))
(t (if (not (funcall test (apply-key key ,elt1)
(apply-key key ,elt2)))
(return (if from-end (1+ (the fixnum index1)) index1))))))
(sb!xc:defmacro mumble-mumble-mismatch ()
`(do ((index1 start1 (+ index1 (the fixnum inc)))
(index2 start2 (+ index2 (the fixnum inc))))
(())
(declare (fixnum index1 index2))
(if-mismatch (aref sequence1 index1) (aref sequence2 index2))))
(sb!xc:defmacro mumble-list-mismatch ()
`(do ((index1 start1 (+ index1 (the fixnum inc)))
(index2 start2 (+ index2 (the fixnum inc))))
(())
(declare (fixnum index1 index2))
(if-mismatch (aref sequence1 index1) (pop sequence2))))
(sb!xc:defmacro list-mumble-mismatch ()
`(do ((index1 start1 (+ index1 (the fixnum inc)))
(index2 start2 (+ index2 (the fixnum inc))))
(())
(declare (fixnum index1 index2))
(if-mismatch (pop sequence1) (aref sequence2 index2))))
(sb!xc:defmacro list-list-mismatch ()
`(do ((sequence1 sequence1)
(sequence2 sequence2)
(index1 start1 (+ index1 (the fixnum inc)))
(index2 start2 (+ index2 (the fixnum inc))))
(())
(declare (fixnum index1 index2))
(if-mismatch (pop sequence1) (pop sequence2))))
) ; EVAL-WHEN
(define-sequence-traverser mismatch
(sequence1 sequence2 &rest args &key from-end test test-not
start1 end1 start2 end2 key)
#!+sb-doc
"The specified subsequences of SEQUENCE1 and SEQUENCE2 are compared
element-wise. If they are of equal length and match in every element, the
result is NIL. Otherwise, the result is a non-negative integer, the index
within SEQUENCE1 of the leftmost position at which they fail to match; or,
if one is shorter than and a matching prefix of the other, the index within
SEQUENCE1 beyond the last position tested is returned. If a non-NIL
:FROM-END argument is given, then one plus the index of the rightmost
position in which the sequences differ is returned."
(declare (fixnum start1 start2))
(declare (truly-dynamic-extent args))
(let* ((end1 (or end1 length1))
(end2 (or end2 length2)))
(declare (type index end1 end2))
(match-vars
(seq-dispatch sequence1
(seq-dispatch sequence2
(matchify-list (sequence1 start1 length1 end1)
(matchify-list (sequence2 start2 length2 end2)
(list-list-mismatch)))
(matchify-list (sequence1 start1 length1 end1)
(list-mumble-mismatch))
(apply #'sb!sequence:mismatch sequence1 sequence2 args))
(seq-dispatch sequence2
(matchify-list (sequence2 start2 length2 end2)
(mumble-list-mismatch))
(mumble-mumble-mismatch)
(apply #'sb!sequence:mismatch sequence1 sequence2 args))
(apply #'sb!sequence:mismatch sequence1 sequence2 args)))))
;;; search comparison functions
(eval-when (:compile-toplevel :execute)
;;; Compare two elements and return if they don't match.
(sb!xc:defmacro compare-elements (elt1 elt2)
`(if test-not
(if (funcall test-not (apply-key key ,elt1) (apply-key key ,elt2))
(return nil)
t)
(if (not (funcall test (apply-key key ,elt1) (apply-key key ,elt2)))
(return nil)
t)))
(sb!xc:defmacro search-compare-list-list (main sub)
`(do ((main ,main (cdr main))
(jndex start1 (1+ jndex))
(sub (nthcdr start1 ,sub) (cdr sub)))
((or (endp main) (endp sub) (<= end1 jndex))
t)
(declare (type (integer 0) jndex))
(compare-elements (car sub) (car main))))
(sb!xc:defmacro search-compare-list-vector (main sub)
`(do ((main ,main (cdr main))
(index start1 (1+ index)))
((or (endp main) (= index end1)) t)
(compare-elements (aref ,sub index) (car main))))
(sb!xc:defmacro search-compare-vector-list (main sub index)
`(do ((sub (nthcdr start1 ,sub) (cdr sub))
(jndex start1 (1+ jndex))
(index ,index (1+ index)))
((or (<= end1 jndex) (endp sub)) t)
(declare (type (integer 0) jndex))
(compare-elements (car sub) (aref ,main index))))
(sb!xc:defmacro search-compare-vector-vector (main sub index)
`(do ((index ,index (1+ index))
(sub-index start1 (1+ sub-index)))
((= sub-index end1) t)
(compare-elements (aref ,sub sub-index) (aref ,main index))))
(sb!xc:defmacro search-compare (main-type main sub index)
(if (eq main-type 'list)
`(seq-dispatch ,sub
(search-compare-list-list ,main ,sub)
(search-compare-list-vector ,main ,sub)
;; KLUDGE: just hack it together so that it works
(return-from search (apply #'sb!sequence:search sequence1 sequence2 args)))
`(seq-dispatch ,sub
(search-compare-vector-list ,main ,sub ,index)
(search-compare-vector-vector ,main ,sub ,index)
(return-from search (apply #'sb!sequence:search sequence1 sequence2 args)))))
) ; EVAL-WHEN
;;;; SEARCH
(eval-when (:compile-toplevel :execute)
(sb!xc:defmacro list-search (main sub)
`(do ((main (nthcdr start2 ,main) (cdr main))
(index2 start2 (1+ index2))
(terminus (- end2 (the (integer 0) (- end1 start1))))
(last-match ()))
((> index2 terminus) last-match)
(declare (type (integer 0) index2))
(if (search-compare list main ,sub index2)
(if from-end
(setq last-match index2)
(return index2)))))
(sb!xc:defmacro vector-search (main sub)
`(do ((index2 start2 (1+ index2))
(terminus (- end2 (the (integer 0) (- end1 start1))))
(last-match ()))
((> index2 terminus) last-match)
(declare (type (integer 0) index2))
(if (search-compare vector ,main ,sub index2)
(if from-end
(setq last-match index2)
(return index2)))))
) ; EVAL-WHEN
(define-sequence-traverser search
(sequence1 sequence2 &rest args &key
from-end test test-not start1 end1 start2 end2 key)
(declare (fixnum start1 start2))
(declare (truly-dynamic-extent args))
(let ((end1 (or end1 length1))
(end2 (or end2 length2)))
(seq-dispatch sequence2
(list-search sequence2 sequence1)
(vector-search sequence2 sequence1)
(apply #'sb!sequence:search sequence1 sequence2 args))))
;;; FIXME: this was originally in array.lisp; it might be better to
;;; put it back there, and make DOSEQUENCE and SEQ-DISPATCH be in
;;; a new early-seq.lisp file.
(defun fill-data-vector (vector dimensions initial-contents)
(let ((index 0))
(labels ((frob (axis dims contents)
(cond ((null dims)
(setf (aref vector index) contents)
(incf index))
(t
(unless (typep contents 'sequence)
(error "malformed :INITIAL-CONTENTS: ~S is not a ~
sequence, but ~W more layer~:P needed."
contents
(- (length dimensions) axis)))
(unless (= (length contents) (car dims))
(error "malformed :INITIAL-CONTENTS: Dimension of ~
axis ~W is ~W, but ~S is ~W long."
axis (car dims) contents (length contents)))
(sb!sequence:dosequence (content contents)
(frob (1+ axis) (cdr dims) content))))))
(frob 0 dimensions initial-contents))))