[3031b2]: src / compiler / typetran.lisp Maximize Restore History

Download this file

typetran.lisp    740 lines (703 with data), 34.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
;;;; This file contains stuff that implements the portable IR1
;;;; semantics of type tests and coercion. The main thing we do is
;;;; convert complex type operations into simpler code that can be
;;;; compiled inline.
;;;; This software is part of the SBCL system. See the README file for
;;;; more information.
;;;;
;;;; This software is derived from the CMU CL system, which was
;;;; written at Carnegie Mellon University and released into the
;;;; public domain. The software is in the public domain and is
;;;; provided with absolutely no warranty. See the COPYING and CREDITS
;;;; files for more information.
(in-package "SB!C")
;;;; type predicate translation
;;;;
;;;; We maintain a bidirectional association between type predicates
;;;; and the tested type. The presence of a predicate in this
;;;; association implies that it is desirable to implement tests of
;;;; this type using the predicate. These are either predicates that
;;;; the back end is likely to have special knowledge about, or
;;;; predicates so complex that the only reasonable implentation is
;;;; via function call.
;;;;
;;;; Some standard types (such as ATOM) are best tested by letting the
;;;; TYPEP source transform do its thing with the expansion. These
;;;; types (and corresponding predicates) are not maintained in this
;;;; association. In this case, there need not be any predicate
;;;; function unless it is required by the Common Lisp specification.
;;;;
;;;; The mapping between predicates and type structures is considered
;;;; part of the backend; different backends can support different
;;;; sets of predicates.
;;; Establish an association between the type predicate NAME and the
;;; corresponding TYPE. This causes the type predicate to be
;;; recognized for purposes of optimization.
(defmacro define-type-predicate (name type)
`(%define-type-predicate ',name ',type))
(defun %define-type-predicate (name specifier)
(let ((type (specifier-type specifier)))
(setf (gethash name *backend-predicate-types*) type)
(setf *backend-type-predicates*
(cons (cons type name)
(remove name *backend-type-predicates*
:key #'cdr)))
(%deftransform name '(function (t) *) #'fold-type-predicate)
name))
;;;; IR1 transforms
;;; If we discover the type argument is constant during IR1
;;; optimization, then give the source transform another chance. The
;;; source transform can't pass, since we give it an explicit
;;; constant. At worst, it will convert to %TYPEP, which will prevent
;;; spurious attempts at transformation (and possible repeated
;;; warnings.)
(deftransform typep ((object type &optional env) * * :node node)
(unless (constant-lvar-p type)
(give-up-ir1-transform "can't open-code test of non-constant type"))
(unless (and (constant-lvar-p env) (null (lvar-value env)))
(give-up-ir1-transform "environment argument present and not null"))
(multiple-value-bind (expansion fail-p)
(source-transform-typep 'object (lvar-value type))
(if fail-p
(abort-ir1-transform)
expansion)))
;;; If the lvar OBJECT definitely is or isn't of the specified
;;; type, then return T or NIL as appropriate. Otherwise quietly
;;; GIVE-UP-IR1-TRANSFORM.
(defun ir1-transform-type-predicate (object type node)
(declare (type lvar object) (type ctype type))
(let ((otype (lvar-type object)))
(flet ((tricky ()
(cond ((typep type 'alien-type-type)
;; We don't transform alien type tests until here, because
;; once we do that the rest of the type system can no longer
;; reason about them properly -- so we'd miss out on type
;; derivation, etc.
(delay-ir1-transform node :optimize)
(let ((alien-type (alien-type-type-alien-type type)))
;; If it's a lisp-rep-type, the CTYPE should be one already.
(aver (not (compute-lisp-rep-type alien-type)))
`(sb!alien::alien-value-typep object ',alien-type)))
(t
(give-up-ir1-transform)))))
(cond ((not (types-equal-or-intersect otype type))
nil)
((csubtypep otype type)
t)
((eq type *empty-type*)
nil)
(t
(let ((intersect (type-intersection2 type otype)))
(unless intersect
(tricky))
(multiple-value-bind (constantp value)
(type-singleton-p intersect)
(if constantp
`(eql object ',value)
(tricky)))))))))
;;; Flush %TYPEP tests whose result is known at compile time.
(deftransform %typep ((object type) * * :node node)
(unless (constant-lvar-p type)
(give-up-ir1-transform))
(ir1-transform-type-predicate
object
(ir1-transform-specifier-type (lvar-value type))
node))
;;; This is the IR1 transform for simple type predicates. It checks
;;; whether the single argument is known to (not) be of the
;;; appropriate type, expanding to T or NIL as appropriate.
(deftransform fold-type-predicate ((object) * * :node node :defun-only t)
(let ((ctype (gethash (leaf-source-name
(ref-leaf
(lvar-uses
(basic-combination-fun node))))
*backend-predicate-types*)))
(aver ctype)
(ir1-transform-type-predicate object ctype node)))
;;; If FIND-CLASSOID is called on a constant class, locate the
;;; CLASSOID-CELL at load time.
(deftransform find-classoid ((name) ((constant-arg symbol)) *)
(let* ((name (lvar-value name))
(cell (find-classoid-cell name :create t)))
`(or (classoid-cell-classoid ',cell)
(error "class not yet defined: ~S" name))))
;;;; standard type predicates, i.e. those defined in package COMMON-LISP,
;;;; plus at least one oddball (%INSTANCEP)
;;;;
;;;; Various other type predicates (e.g. low-level representation
;;;; stuff like SIMPLE-ARRAY-SINGLE-FLOAT-P) are defined elsewhere.
;;; FIXME: This function is only called once, at top level. Why not
;;; just expand all its operations into toplevel code?
(defun !define-standard-type-predicates ()
(define-type-predicate arrayp array)
; (The ATOM predicate is handled separately as (NOT CONS).)
(define-type-predicate bit-vector-p bit-vector)
(define-type-predicate characterp character)
(define-type-predicate compiled-function-p compiled-function)
(define-type-predicate complexp complex)
(define-type-predicate complex-rational-p (complex rational))
(define-type-predicate complex-float-p (complex float))
(define-type-predicate consp cons)
(define-type-predicate floatp float)
(define-type-predicate functionp function)
(define-type-predicate integerp integer)
(define-type-predicate keywordp keyword)
(define-type-predicate listp list)
(define-type-predicate null null)
(define-type-predicate numberp number)
(define-type-predicate rationalp rational)
(define-type-predicate realp real)
(define-type-predicate sequencep sequence)
(define-type-predicate extended-sequence-p extended-sequence)
(define-type-predicate simple-bit-vector-p simple-bit-vector)
(define-type-predicate simple-string-p simple-string)
(define-type-predicate simple-vector-p simple-vector)
(define-type-predicate stringp string)
(define-type-predicate %instancep instance)
(define-type-predicate funcallable-instance-p funcallable-instance)
(define-type-predicate symbolp symbol)
(define-type-predicate vectorp vector))
(!define-standard-type-predicates)
;;;; transforms for type predicates not implemented primitively
;;;;
;;;; See also VM dependent transforms.
(define-source-transform atom (x)
`(not (consp ,x)))
#!+sb-unicode
(define-source-transform base-char-p (x)
`(typep ,x 'base-char))
;;;; TYPEP source transform
;;; Return a form that tests the variable N-OBJECT for being in the
;;; binds specified by TYPE. BASE is the name of the base type, for
;;; declaration. We make SAFETY locally 0 to inhibit any checking of
;;; this assertion.
(defun transform-numeric-bound-test (n-object type base)
(declare (type numeric-type type))
(let ((low (numeric-type-low type))
(high (numeric-type-high type)))
`(locally
(declare (optimize (safety 0)))
(and ,@(when low
(if (consp low)
`((> (truly-the ,base ,n-object) ,(car low)))
`((>= (truly-the ,base ,n-object) ,low))))
,@(when high
(if (consp high)
`((< (truly-the ,base ,n-object) ,(car high)))
`((<= (truly-the ,base ,n-object) ,high))))))))
;;; Do source transformation of a test of a known numeric type. We can
;;; assume that the type doesn't have a corresponding predicate, since
;;; those types have already been picked off. In particular, CLASS
;;; must be specified, since it is unspecified only in NUMBER and
;;; COMPLEX. Similarly, we assume that COMPLEXP is always specified.
;;;
;;; For non-complex types, we just test that the number belongs to the
;;; base type, and then test that it is in bounds. When CLASS is
;;; INTEGER, we check to see whether the range is no bigger than
;;; FIXNUM. If so, we check for FIXNUM instead of INTEGER. This allows
;;; us to use fixnum comparison to test the bounds.
;;;
;;; For complex types, we must test for complex, then do the above on
;;; both the real and imaginary parts. When CLASS is float, we need
;;; only check the type of the realpart, since the format of the
;;; realpart and the imagpart must be the same.
(defun source-transform-numeric-typep (object type)
(let* ((class (numeric-type-class type))
(base (ecase class
(integer (containing-integer-type
(if (numeric-type-complexp type)
(modified-numeric-type type
:complexp :real)
type)))
(rational 'rational)
(float (or (numeric-type-format type) 'float))
((nil) 'real))))
(once-only ((n-object object))
(ecase (numeric-type-complexp type)
(:real
`(and (typep ,n-object ',base)
,(transform-numeric-bound-test n-object type base)))
(:complex
`(and (complexp ,n-object)
,(once-only ((n-real `(realpart (truly-the complex ,n-object)))
(n-imag `(imagpart (truly-the complex ,n-object))))
`(progn
,n-imag ; ignorable
(and (typep ,n-real ',base)
,@(when (eq class 'integer)
`((typep ,n-imag ',base)))
,(transform-numeric-bound-test n-real type base)
,(transform-numeric-bound-test n-imag type
base))))))))))
;;; Do the source transformation for a test of a hairy type. AND,
;;; SATISFIES and NOT are converted into the obvious code. We convert
;;; unknown types to %TYPEP, emitting an efficiency note if
;;; appropriate.
(defun source-transform-hairy-typep (object type)
(declare (type hairy-type type))
(let ((spec (hairy-type-specifier type)))
(cond ((unknown-type-p type)
(when (policy *lexenv* (> speed inhibit-warnings))
(compiler-notify "can't open-code test of unknown type ~S"
(type-specifier type)))
`(%typep ,object ',spec))
(t
(ecase (first spec)
(satisfies
`(if (funcall (global-function ,(second spec)) ,object) t nil))
((not and)
(once-only ((n-obj object))
`(,(first spec) ,@(mapcar (lambda (x)
`(typep ,n-obj ',x))
(rest spec))))))))))
(defun source-transform-negation-typep (object type)
(declare (type negation-type type))
(let ((spec (type-specifier (negation-type-type type))))
`(not (typep ,object ',spec))))
;;; Do source transformation for TYPEP of a known union type. If a
;;; union type contains LIST, then we pull that out and make it into a
;;; single LISTP call. Note that if SYMBOL is in the union, then LIST
;;; will be a subtype even without there being any (member NIL). We
;;; currently just drop through to the general code in this case,
;;; rather than trying to optimize it (but FIXME CSR 2004-04-05: it
;;; wouldn't be hard to optimize it after all).
(defun source-transform-union-typep (object type)
(let* ((types (union-type-types type))
(type-cons (specifier-type 'cons))
(mtype (find-if #'member-type-p types))
(members (when mtype (member-type-members mtype))))
(if (and mtype
(memq nil members)
(memq type-cons types))
(once-only ((n-obj object))
`(or (listp ,n-obj)
(typep ,n-obj
'(or ,@(mapcar #'type-specifier
(remove type-cons
(remove mtype types)))
(member ,@(remove nil members))))))
(once-only ((n-obj object))
`(or ,@(mapcar (lambda (x)
`(typep ,n-obj ',(type-specifier x)))
types))))))
;;; Do source transformation for TYPEP of a known intersection type.
(defun source-transform-intersection-typep (object type)
(once-only ((n-obj object))
`(and ,@(mapcar (lambda (x)
`(typep ,n-obj ',(type-specifier x)))
(intersection-type-types type)))))
;;; If necessary recurse to check the cons type.
(defun source-transform-cons-typep (object type)
(let* ((car-type (cons-type-car-type type))
(cdr-type (cons-type-cdr-type type)))
(let ((car-test-p (not (type= car-type *universal-type*)))
(cdr-test-p (not (type= cdr-type *universal-type*))))
(if (and (not car-test-p) (not cdr-test-p))
`(consp ,object)
(once-only ((n-obj object))
`(and (consp ,n-obj)
,@(if car-test-p
`((typep (car ,n-obj)
',(type-specifier car-type))))
,@(if cdr-test-p
`((typep (cdr ,n-obj)
',(type-specifier cdr-type))))))))))
(defun source-transform-character-set-typep (object type)
(let ((pairs (character-set-type-pairs type)))
(if (and (= (length pairs) 1)
(= (caar pairs) 0)
(= (cdar pairs) (1- sb!xc:char-code-limit)))
`(characterp ,object)
(once-only ((n-obj object))
(let ((n-code (gensym "CODE")))
`(and (characterp ,n-obj)
(let ((,n-code (sb!xc:char-code ,n-obj)))
(or
,@(loop for pair in pairs
collect
`(<= ,(car pair) ,n-code ,(cdr pair)))))))))))
#!+sb-simd-pack
(defun source-transform-simd-pack-typep (object type)
(if (type= type (specifier-type 'simd-pack))
`(simd-pack-p ,object)
(once-only ((n-obj object))
(let ((n-tag (gensym "TAG")))
`(and
(simd-pack-p ,n-obj)
(let ((,n-tag (%simd-pack-tag ,n-obj)))
(or ,@(loop
for type in (simd-pack-type-element-type type)
for index = (position type *simd-pack-element-types*)
collect `(eql ,n-tag ,index)))))))))
;;; Return the predicate and type from the most specific entry in
;;; *TYPE-PREDICATES* that is a supertype of TYPE.
(defun find-supertype-predicate (type)
(declare (type ctype type))
(let ((res nil)
(res-type nil))
(dolist (x *backend-type-predicates*)
(let ((stype (car x)))
(when (and (csubtypep type stype)
(or (not res-type)
(csubtypep stype res-type)))
(setq res-type stype)
(setq res (cdr x)))))
(values res res-type)))
;;; Return forms to test that OBJ has the rank and dimensions
;;; specified by TYPE, where STYPE is the type we have checked against
;;; (which is the same but for dimensions and element type).
;;;
;;; Secondary return value is true if passing the generated tests implies that
;;; the array has a header.
(defun test-array-dimensions (obj type stype)
(declare (type array-type type stype))
(let ((obj `(truly-the ,(type-specifier stype) ,obj))
(dims (array-type-dimensions type)))
(unless (or (eq dims '*)
(equal dims (array-type-dimensions stype)))
(cond ((cdr dims)
(values `((array-header-p ,obj)
,@(when (eq (array-type-dimensions stype) '*)
`((= (%array-rank ,obj) ,(length dims))))
,@(loop for d in dims
for i from 0
unless (eq '* d)
collect `(= (%array-dimension ,obj ,i) ,d)))
t))
((not dims)
(values `((array-header-p ,obj)
(= (%array-rank ,obj) 0))
t))
((not (array-type-complexp type))
(if (csubtypep stype (specifier-type 'vector))
(values (unless (eq '* (car dims))
`((= (vector-length ,obj) ,@dims)))
nil)
(values (if (eq '* (car dims))
`((not (array-header-p ,obj)))
`((not (array-header-p ,obj))
(= (vector-length ,obj) ,@dims)))
nil)))
(t
(values (unless (eq '* (car dims))
`((if (array-header-p ,obj)
(= (%array-dimension ,obj 0) ,@dims)
(= (vector-length ,obj) ,@dims))))
nil))))))
;;; Return forms to test that OBJ has the element-type specified by type
;;; specified by TYPE, where STYPE is the type we have checked against (which
;;; is the same but for dimensions and element type). If HEADERP is true, OBJ
;;; is guaranteed to be an array-header.
(defun test-array-element-type (obj type stype headerp)
(declare (type array-type type stype))
(let ((obj `(truly-the ,(type-specifier stype) ,obj))
(eltype (array-type-specialized-element-type type)))
(unless (or (type= eltype (array-type-specialized-element-type stype))
(eq eltype *wild-type*))
(let ((typecode (sb!vm:saetp-typecode (find-saetp-by-ctype eltype))))
(with-unique-names (data)
(if (and headerp (not (array-type-complexp stype)))
;; If we know OBJ is an array header, and that the array is
;; simple, we also know there is exactly one indirection to
;; follow.
`((eq (%other-pointer-widetag (%array-data-vector ,obj)) ,typecode))
`((do ((,data ,(if headerp `(%array-data-vector ,obj) obj)
(%array-data-vector ,data)))
((not (array-header-p ,data))
(eq (%other-pointer-widetag ,data) ,typecode))))))))))
;;; If we can find a type predicate that tests for the type without
;;; dimensions, then use that predicate and test for dimensions.
;;; Otherwise, just do %TYPEP.
(defun source-transform-array-typep (obj type)
(multiple-value-bind (pred stype) (find-supertype-predicate type)
(if (and (array-type-p stype)
;; (If the element type hasn't been defined yet, it's
;; not safe to assume here that it will eventually
;; have (UPGRADED-ARRAY-ELEMENT-TYPE type)=T, so punt.)
(not (unknown-type-p (array-type-element-type type)))
(or (eq (array-type-complexp stype) (array-type-complexp type))
(and (eql (array-type-complexp stype) :maybe)
(eql (array-type-complexp type) t))))
(once-only ((n-obj obj))
(multiple-value-bind (tests headerp)
(test-array-dimensions n-obj type stype)
`(and (,pred ,n-obj)
,@(when (and (eql (array-type-complexp stype) :maybe)
(eql (array-type-complexp type) t))
;; KLUDGE: this is a bit lame; if we get here,
;; we already know that N-OBJ is an array, but
;; (NOT SIMPLE-ARRAY) doesn't know that. On the
;; other hand, this should get compiled down to
;; two widetag tests, so it's only a bit lame.
`((typep ,n-obj '(not simple-array))))
,@tests
,@(test-array-element-type n-obj type stype headerp))))
`(%typep ,obj ',(type-specifier type)))))
;;; Transform a type test against some instance type. The type test is
;;; flushed if the result is known at compile time. If not properly
;;; named, error. If sealed and has no subclasses, just test for
;;; layout-EQ. If a structure then test for layout-EQ and then a
;;; general test based on layout-inherits. If safety is important,
;;; then we also check whether the layout for the object is invalid
;;; and signal an error if so. Otherwise, look up the indirect
;;; class-cell and call CLASS-CELL-TYPEP at runtime.
(deftransform %instance-typep ((object spec) (* *) * :node node)
(aver (constant-lvar-p spec))
(let* ((spec (lvar-value spec))
(class (specifier-type spec))
(name (classoid-name class))
(otype (lvar-type object))
(layout (let ((res (info :type :compiler-layout name)))
(if (and res (not (layout-invalid res)))
res
nil))))
(cond
;; Flush tests whose result is known at compile time.
((not (types-equal-or-intersect otype class))
nil)
((csubtypep otype class)
t)
;; If not properly named, error.
((not (and name (eq (find-classoid name) class)))
(compiler-error "can't compile TYPEP of anonymous or undefined ~
class:~% ~S"
class))
(t
;; Delay the type transform to give type propagation a chance.
(delay-ir1-transform node :constraint)
;; Otherwise transform the type test.
(multiple-value-bind (pred get-layout)
(cond
((csubtypep class (specifier-type 'funcallable-instance))
(values 'funcallable-instance-p '%funcallable-instance-layout))
((csubtypep class (specifier-type 'instance))
(values '%instancep '%instance-layout))
(t
(values '(lambda (x) (declare (ignore x)) t) 'layout-of)))
(cond
((and (eq (classoid-state class) :sealed) layout
(not (classoid-subclasses class)))
;; Sealed and has no subclasses.
(let ((n-layout (gensym)))
`(and (,pred object)
(let ((,n-layout (,get-layout object)))
,@(when (policy *lexenv* (>= safety speed))
`((when (layout-invalid ,n-layout)
(%layout-invalid-error object ',layout))))
(eq ,n-layout ',layout)))))
((and (typep class 'structure-classoid) layout)
;; structure type tests; hierarchical layout depths
(let ((depthoid (layout-depthoid layout))
(n-layout (gensym)))
`(and (,pred object)
(let ((,n-layout (,get-layout object)))
;; we used to check for invalid layouts here,
;; but in fact that's both unnecessary and
;; wrong; it's unnecessary because structure
;; classes can't be redefined, and it's wrong
;; because it is quite legitimate to pass an
;; object with an invalid layout to a structure
;; type test.
(if (eq ,n-layout ',layout)
t
(and (> (layout-depthoid ,n-layout)
,depthoid)
(locally (declare (optimize (safety 0)))
;; Use DATA-VECTOR-REF directly,
;; since that's what SVREF in a
;; SAFETY 0 lexenv will eventually be
;; transformed to. This can give a
;; large compilation speedup, since
;; %INSTANCE-TYPEPs are frequently
;; created during GENERATE-TYPE-CHECKS,
;; and the normal aref transformation path
;; is pretty heavy.
(eq (data-vector-ref (layout-inherits ,n-layout)
,depthoid)
',layout))))))))
((and layout (>= (layout-depthoid layout) 0))
;; hierarchical layout depths for other things (e.g.
;; CONDITION, STREAM)
(let ((depthoid (layout-depthoid layout))
(n-layout (gensym))
(n-inherits (gensym)))
`(and (,pred object)
(let ((,n-layout (,get-layout object)))
(when (layout-invalid ,n-layout)
(setq ,n-layout (update-object-layout-or-invalid
object ',layout)))
(if (eq ,n-layout ',layout)
t
(let ((,n-inherits (layout-inherits ,n-layout)))
(declare (optimize (safety 0)))
(and (> (length ,n-inherits) ,depthoid)
;; See above.
(eq (data-vector-ref ,n-inherits ,depthoid)
',layout))))))))
(t
(/noshow "default case -- ,PRED and CLASS-CELL-TYPEP")
`(and (,pred object)
(classoid-cell-typep (,get-layout object)
',(find-classoid-cell name :create t)
object)))))))))
;;; If the specifier argument is a quoted constant, then we consider
;;; converting into a simple predicate or other stuff. If the type is
;;; constant, but we can't transform the call, then we convert to
;;; %TYPEP. We only pass when the type is non-constant. This allows us
;;; to recognize between calls that might later be transformed
;;; successfully when a constant type is discovered. We don't give an
;;; efficiency note when we pass, since the IR1 transform will give
;;; one if necessary and appropriate.
;;;
;;; If the type is TYPE= to a type that has a predicate, then expand
;;; to that predicate. Otherwise, we dispatch off of the type's type.
;;; These transformations can increase space, but it is hard to tell
;;; when, so we ignore policy and always do them.
(defun source-transform-typep (object type)
(let ((ctype (careful-specifier-type type)))
(or (when (not ctype)
(compiler-warn "illegal type specifier for TYPEP: ~S" type)
(return-from source-transform-typep (values nil t)))
(multiple-value-bind (constantp value) (type-singleton-p ctype)
(and constantp
`(eql ,object ',value)))
(let ((pred (cdr (assoc ctype *backend-type-predicates*
:test #'type=))))
(when pred `(,pred ,object)))
(typecase ctype
(hairy-type
(source-transform-hairy-typep object ctype))
(negation-type
(source-transform-negation-typep object ctype))
(union-type
(source-transform-union-typep object ctype))
(intersection-type
(source-transform-intersection-typep object ctype))
(member-type
`(if (member ,object ',(member-type-members ctype)) t))
(args-type
(compiler-warn "illegal type specifier for TYPEP: ~S" type)
(return-from source-transform-typep (values nil t)))
(t nil))
(typecase ctype
(numeric-type
(source-transform-numeric-typep object ctype))
(classoid
`(%instance-typep ,object ',type))
(array-type
(source-transform-array-typep object ctype))
(cons-type
(source-transform-cons-typep object ctype))
(character-set-type
(source-transform-character-set-typep object ctype))
#!+sb-simd-pack
(simd-pack-type
(source-transform-simd-pack-typep object ctype))
(t nil))
`(%typep ,object ',type))))
(define-source-transform typep (object spec &optional env)
;; KLUDGE: It looks bad to only do this on explicitly quoted forms,
;; since that would overlook other kinds of constants. But it turns
;; out that the DEFTRANSFORM for TYPEP detects any constant
;; lvar, transforms it into a quoted form, and gives this
;; source transform another chance, so it all works out OK, in a
;; weird roundabout way. -- WHN 2001-03-18
(if (and (not env)
(consp spec)
(eq (car spec) 'quote)
(or (not *allow-instrumenting*)
(policy *lexenv* (= store-coverage-data 0))))
(source-transform-typep object (cadr spec))
(values nil t)))
;;;; coercion
;;; Constant-folding.
;;;
#-sb-xc-host
(defoptimizer (coerce optimizer) ((x type) node)
(when (and (constant-lvar-p x) (constant-lvar-p type))
(let ((value (lvar-value x)))
(when (or (numberp value) (characterp value))
(constant-fold-call node)
t))))
;;; Drops dimension information from vector types.
(defun simplify-vector-type (type)
(aver (csubtypep type (specifier-type '(array * (*)))))
(let* ((array-type
(if (csubtypep type (specifier-type 'simple-array))
'simple-array
'array))
(complexp
(not
(or (eq 'simple-array array-type)
(neq *empty-type*
(type-intersection type (specifier-type 'simple-array)))))))
(dolist (etype
#+sb-xc-host '(t bit character)
#-sb-xc-host sb!kernel::*specialized-array-element-types*
#+sb-xc-host (values nil nil nil)
#-sb-xc-host (values `(,array-type * (*)) t complexp))
(when etype
(let ((simplified (specifier-type `(,array-type ,etype (*)))))
(when (csubtypep type simplified)
(return (values (type-specifier simplified)
etype
complexp))))))))
(deftransform coerce ((x type) (* *) * :node node)
(unless (constant-lvar-p type)
(give-up-ir1-transform))
(let* ((tval (lvar-value type))
(tspec (ir1-transform-specifier-type tval)))
(if (csubtypep (lvar-type x) tspec)
'x
;; Note: The THE forms we use to wrap the results make sure that
;; specifiers like (SINGLE-FLOAT 0.0 1.0) can raise a TYPE-ERROR.
(cond
((csubtypep tspec (specifier-type 'double-float))
`(the ,tval (%double-float x)))
;; FIXME: #!+long-float (t ,(error "LONG-FLOAT case needed"))
((csubtypep tspec (specifier-type 'float))
`(the ,tval (%single-float x)))
;; Special case STRING and SIMPLE-STRING as they are union types
;; in SBCL.
((member tval '(string simple-string))
`(the ,tval
(if (typep x ',tval)
x
(replace (make-array (length x) :element-type 'character) x))))
;; Special case VECTOR
((eq tval 'vector)
`(the ,tval
(if (vectorp x)
x
(replace (make-array (length x)) x))))
;; Handle specialized element types for 1D arrays.
((csubtypep tspec (specifier-type '(array * (*))))
;; Can we avoid checking for dimension issues like (COERCE FOO
;; '(SIMPLE-VECTOR 5)) returning a vector of length 6?
;;
;; CLHS actually allows this for all code with SAFETY < 3,
;; but we're a conservative bunch.
(if (or (policy node (zerop safety)) ; no need in unsafe code
(and (array-type-p tspec) ; no need when no dimensions
(equal (array-type-dimensions tspec) '(*))))
;; We can!
(multiple-value-bind (vtype etype complexp) (simplify-vector-type tspec)
(unless vtype
(give-up-ir1-transform))
`(the ,vtype
(if (typep x ',vtype)
x
(replace
(make-array (length x) :element-type ',etype
,@(when complexp
(list :fill-pointer t
:adjustable t)))
x))))
;; No, duh. Dimension checking required.
(give-up-ir1-transform
"~@<~S specifies dimensions other than (*) in safe code.~:@>"
tval)))
(t
(give-up-ir1-transform
"~@<open coding coercion to ~S not implemented.~:@>"
tval))))))